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Introduction
This report covers the results and design process of team “this is fine” ‘s EEE1 end of year project,
detailing the methodology and planning behind the project as well as the implementation into Quartus

and the errors encountered leading up to the final complete CPU and its operation/performance.

Outline
The task is to use Quartus Prime to design a CPU with an ISA that performs the following tasks:
calculates Fibonacci numbers using recursion, calculates pseudo-random integers with a linear
congruential generator and traverses a linked list to find an item. It must be designed with features
‘chosen carefully to achieve the best performance in the greatest number of applications for the

smallest number of transistors.

From the specification [2] the following key elements were identified: A stack to keep track of
intermediate variables of a recursive function, the implementation of multiplication for two sixteen-bit

integers, and traversing a linked list (stored in RAM) using indirect addressing.

Additionally, the instruction words had to be encoded to provide an assembly line translation of them.
No specific requirement on the architecture of the CPU was required, but it was agreed that an
efficient and fast circuit was needed, but one could still be easily modifier to compute more general
instructions, such as loading or storing, and more complex operations than the ones in the
specification [2].

Design Criteria
Approaching this task was done with Product Design Specification in mind as the CPU, despite being
a digital design, emulates a real-world product and will therefore have specifications more akin to
hardware rather than software.

Performance. It is essential that after the functional requirements for the CPU have been achieved, a
lot of optimisation is needed to ensure this functionality is provided with minimal components, minimal

power consumption and a high clock frequency.

Size. Whilst there are no restrictions on the physical size of the CPU, it is essential that the number of
components is as limited as possible, as detailed by the spec which highlights the necessity of

optimisation.

Quality and Reliability. The CPU must provide consistent results and should operate correctly for
corner cases. It is important that after an instruction has been completed, the functionality is retained

and can perform further operations with consistent outputs.

Timescale. The project was set mid-May with a deadline of June 14%. Proper planning must be
implemented to ensure the CPU is functioning early on so that later, more time can be allocated to

optimising and writing up the final report
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Testing. A necessity that should be done regularly as it aids in identifying errors throughout the design

process. It should be done thoroughly to ensures the CPU works for all possible input values.

Documentation. Proper documentation is important as half of the final grade comes from the report.
Additionally, it is useful for personal use to better recount how past errors were solved. Keeping note

of why changes are made help members understand why design aspects, made by others, exist.

Design Process
The plan for the design process was for individual members to be assigned one of the 3 “tasks”
(operations required by the specification) to design a block which would execute it. Once tested,
these blocks would be compiled into 2 similar but distinct general architectures that would run these
instructions. One version was aimed to be a more flexible CPU able to run other instructions as well
as more easily incorporate new instructions which used features introduced by the 3 tasks blocks, e.g.
the stack or indirect addressing. This general CPU would then be converted into an optimized CPU
which prioritises performance and removed all functions not related to the 3 required tasks, trading
flexibility for performance. Though both versions would undergo functional analysis, the non-general
CPU (performance-oriented version) would be the focus of optimizing after analysis, aiming for a

higher clock speed and lower power consumption than the general CPU.

Task 1 — Fibonacci Sequence

The task was to implement the recursive function in Figure 1 which calculates the nth term of the
Fibonacci sequence using a stack which stores temporary variables created in the process. The stack
could be implemented with either custom hardware or data memory.

Figure 1 — Fibonacci function in C++

int fib(const int n){
int y;
if (n<=1) y = 1;
else {
y = fib(n-1)
y =y + fib(n-2);
return y;
}

Stack memory is “a special region of your computer’s memory that stores temporary variables created
by each function” [3]. This means whenever a fib() function is called, a location stack is allocated for
this function, along with a return address, until it is completed. Then, this location in stack is freed and
“that region of memory becomes available for other stack variables” [3]. Consequently, stack is

usually referred to as a ‘last in, first out’ [3] data structure.

Page 4 of 71



Traversing the stack requires a stack pointer, ‘a register holding the address for the stack’ [1]. A stack
pointer makes it possible to choose where new data is inserted and where data must be freed up after
a function is completed.

Early version used the idea of taking an input (n) and decrementing it using verilog logic until a 1 is
returned. Figure 2 shows a system where an input would determine where the returned value 1 is
initially stored.

Figure 2 — a draft diagram of the stack pointer
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Once the initial returned variable 1 is stored, a recurring addition system where the stack pointer
decrements would lead to the final returned variable being stored in 0t position in stack. However, it
became clear that this is not a correct representation of the given Fibonacci function (Figure 1), as

well as not being the correct use of stack memory, despite it providing the desired results.

Additionally, despite the system’s simplicity, it would not be usable for other recursive functions that
could work with the architecture; this design would only be suitable for functions where repeated
addition of the previous two values occurs.

Rather than storing just the individual data value for each variable, the input parameter (n) and the
return address of the function, which this local variable will be returned to, should also be stored [4].
Despite forcing an increase in the stack word size, making this change will allow the architecture to
work properly for other recursive functions with the proper adjustments.

Using this information as well as reinforcing the necessity of stack’s ‘last in, first out’ principles created
a more flexible architecture that better suited the specification (Figure 3)
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Figure 3 — diagram for final version of the stack pointer
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Note that Figure 3 excludes some registers used to acquire inputs into the valuecheck block.

Word sizes

e Stack instruction words (48 bits)

o Input variable n (bits 47-32)
o Return address (bits 31-16)
o Returned variable y (bits 15-0)

o Opcode (4 bits)
o Data (16 bits)

e Outputs

o Final returned value (16 bits)

o Final value pulse (1 bit)
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How it worked

The decoder block called ‘valuecheck’ (Figure 4) handles the signals around the circuit and operates

based on different ‘if’ conditions. These conditions are triggered depending on inputs from around the

circuit; there are eight ‘if’ conditions in total: 1, 2, 3, 4, 5, 6, ‘initializing’, and ‘oneorzero’.

Figure 4 — valuecheck decoder block
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Initialising the first value

This architecture is designed so that the operations only begin when the correct opcode is detected

by the ‘initialstate’ block meaning the input data can vary whenever the instruction is not being called
without affecting anything. When the opcode is detected, the ‘initialstate’ block outputs a pulse
indicating that a value is being loaded in subsequently incrementing the counter called ‘InitialCounter’.
The counter increments again causing another pulse to output from the ‘initialstate’ block. The counter
increments again but no pulse is sent out at this point, remaining at a value of three until the final

value has been calculated.

The two-cycle pulse sent out by the ‘initialstate’ block (called ‘initialpulse’) is input into the
‘statemachine’ block which starts a two or three cycle system (depending on current conditions) used

to calculate and write in the next value into the stack.
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This two-cycle pulse is also input to ‘valuecheck’, triggering the ‘initialising’ condition in the

‘valuecheck’ block, causing the following:

e Cycle 1 — MUX3 selects the input parameter as the input data into the stack.

e Cycle 2 — This value is written into the stack’s 0" address

Before the input variable can be written to stack, it is extended to match the world length of the stack
using the ‘inputextender’ block which fills the 21 LSBs with Os.

Working towards the final value

Once this variable has been input into the O position of stack, the ‘valuecheck’ block identifies what
set of signals to output to the circuit and calculates the new value to store in the RAM. From the initial
value onward, the resulting actions are dependent on the input. For an input of one or zero, the
‘valuecheck’ triggers the ‘oneorzero’ condition designed for when the input parameter (n) is one or
zero and the expected result is one:

e Cycle 1 — Produces the output data value of 1 and writes this into the stack’s 0™ address.
e Cycle 2 — Storing the previous output’s data value of 1 into the register that stores the final
calculated value. The stack’s 0t address is then overwritten with a null value so that the stack

is ready for a new Fibonacci function.
However, if the input parameter (n) is not one or zero, condition ‘3’ is triggered calling fib(n - 1):

e Cycle 1 — The stack pointer is incremented since calling a new function means another spot in
stack is occupied.

e Cycle 2 — The new output value is generated; this is the previous value with the input variable
decremented and the return address adjusted to call the previous function. This new value is

written into the RAM in the same cycle.

Note that for the following tables, all values are in hexadecimal

current function calls | stack address | value of n return data value
function line address
fib3 fib3 0000 3 (0000) by 0000
default
y = fib2 fib2 0001 2 0000 0000
y = fibl fibl 0002 0001 0001 0001
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Once a point has been reached where the input variable (n) is one ore zero, the condition ‘1" is met

where the data value of the return address is incremented once:

e Cycle 1 - A data value set to 1 is generated. The ‘isolatedata’ block (Figure 3) sets the rest of

the word excluding this data value to zero. The stack pointer is updated with the return

address so that this value will be read out in the next cycle.

e Cycle 2 — The value read out from the return address is added to the output of one, from the

‘isolatedata’ block, using the ALU. Additionally, MUX4, the multiplexer controlling inputs to

stack is made to take inputs from the ALU

e Cycle 3 — This new value is written into the stack to overwrite the return address value.

MUX?7 is needed for these 3-cycle conditions so that the input to the ‘valuecheck’ block does not

change at the 3 cycle. Once the 3" cycle has been reached, the signal EXEC3 is used as a select

line for MUX7 so that it switches to a delayed value of the stack output. This ensures that 3-cycle

conditions are fulfilled.

current function calls | stack address | value of n return data value
function line address
fib3 fib3 0000 3 (0000) by 0
default
y = fib2 fib2 0001 2 0000 1

The ‘valuecheck’ block then determines that a fib(n-1) function has just been completed and the fib(n-

2) function has yet to be called. Condition ‘4’ performs the new function call:

e Cycle 1 — Generating the new value where n has been reduced by 2, the return address has

been set to the previous address and the data variable is cleared. The stack pointer is

incremented.

e Cycle 2 — This new value is written to stack.

current function calls | stack address | value of n return data value
function line address
fib3 fib3 0000 3 (0000) by 0
default
y = fib2 fib2 0001 0000 1
y =y + fib(0) | fib0 0002 0 0001 0
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Condition ‘1’ is met again in this transition.

current function calls | stack address | value of n return data value
function line address
fib3 fib3 0000 3 (0000) by 0
default
y = fib2 fib2 0001 2 0000 2

The ‘valuecheck’ block also knows if a fib(n-2) function has just been completed, now the data

variable of the original function must be input to the return address. These instructions come under

the if condition ‘5’:

e Cycle 1 — Data value is isolated using the ‘isolatedata’ block. The stack pointer also updates

with the return address

e Cycle 2 — The value from the return address is read out and added to the previous data value
using the ALU. MUX4 is set to direct the ALU output into to the stack.

e Cycle 3 - The ALU output is written into the stack.

current function calls | stack address | value of n return data value
function line address
fib3 fib3 0000 3 (0000) by 2

default

Since fib(2) was the fib(n - 1) function of fib(3), the condition where fib(n - 2) must be completed is

triggered again (‘4’).

current function calls | stack address | value of n return data value
function line address
fib3 fib3 0000 3 (0000) by 2
default
y =y +fibl fibl 0001 1 0000 0
current function calls | stack address | value of n return data value
function line address
fib3 fib3 0000 3 (0000) by 3
default
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The final value is stored in the 0" address and the 16 relevant bits are stored in a separate register.

The ‘valuecheck’ block detects this through the condition ‘6”:

e Cycle 1 - A ssignal is sent to the ‘sload’ input of the ‘final value’ register (Figure 3) which
allows a value to be loaded in. This same signal is output from the block to indicate that the
final value has been calculated. A null value is also generated to overwrite the Ot address to
bring the block into a ‘rest’ state. The counter from the beginning is reset to allow for a new
input instruction.

e Cycle 2 — This null value is written into the stack.

The rest state/condition 2’ is used when nothing is happening with the fib block thus, there are no

outputs or changes in the circuit. In both cycles, all signals are set to zero so no values can be written

in making the circuit ready for a new input.

Evidence of functionality

Figure 5 — test waveform
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Figure 5 test inputs of n: 0, 5, and 1. Note that once the final value has been calculated, the opcode

switches; this switch is causes by the rest of the CPU.
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All the test results are correct (Figure 6) and when they are calculated the FVsig output pulses

correctly.

The current architecture allows flexibility when implementing other recursive functions due to only
needing to make modifications to the ‘valuecheck’ verilog such as the conditions and the signals sent

out. However, recursive functions that do not solely use addition will need additional hardware.

Optimising Task 1 — Fibonacci Sequence

Planning

The implementation of the Fibonacci task was done in 2 different ways. The method detailed above
was used in the general CPU whilst the other was optimised to be more task specific and less flexible.

This version will be the discussed in the following section.

The process of designing the block, similarly to the other Fibonacci block design process, began with

research about the stack and how it typically works as this was the main feature this task introduced

[1].

In the case of the recursive function from the specification (Figure 1), the stack would need to contain

the current value of n as well as the current value of y, both of which are sixteen-bit integers.

Figure 7.1 — Opcode format

int |[fib(const int n){————»| OP1-00001
int y;
if (n<=1) y = 1;
else {
Ty = fib(n-1)|——*| P2~ 00010
ly =y + Fib(n-2)~— op3- 00011

return y;
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Once this was established, the focus was directed to how the stack would look like during operation,
including the values contained and word size, and how the stack pointer changes during operation.
The initial conclusion was that the C++ function given (Figure 1) had 3 possible outcomes each time a

new n was inputted: either n was one or zero in which case the return value is one, n is greater than

one and the function calls on itself with the new input n being one less

than the current n, or 'y = fib(n - 1)’ has been performed and now ‘fib(n OP1 — Always from instruction word |
- 2)’ is being added on. From this came the first alterations to the =
general implementation of stack to make it more optimized to solely M

run this task, the removal of return address’, using instead an opcode N>1 ¥

to indicate which of the three positions the function was currently in OF2 ¥
(Figure 7.1). Figure 7.2 briefly illustrates how the opcodes would =
interact during runtime. g: E
The word length of the opcode is five bits so that the first operand Ein

could come directly from the instruction word, which is separated into é

five bits of opcode and eleven bits which contained the address of the Y L
starting value of n stored in the data RAM. From this the stack word ops

size would have to be thirty-seven bits to accommodate for the two E
sixteen-bit integers (n and y) and the five-bit opcode. This meant it g‘
would be better to keep the stack separate to the data RAM, which had E

a sixteen-bit word length [2], so that all the variables (OP, n, and y) %;

could be fetched in 1 cycle. The stack was implemented using a 1-port ¥

RAM with 32 words (Figure 8). Complete

Z=N

Figure 7.2 — diagram of opcode use
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After it was clear what the stack would contain during operation, the new focus was how the stack
pointer would traverse this information. The address contained in the stack pointer could either
increase or decrease; in the case of it increasing it would only ever increase by 1 when new items
were added to the stack; This is easily implemented by incrementing the value of the stack pointer.
The stack pointer would decrease only in a specific case where it completes the following set of
recursions shown in Figure 9. From this it is inferred that in cases where the stack pointer decreases
in value, it does so by two. From here all the possible stack pointer operations needed were an
increase by one or decrease by two, and a reset function all tasks are complete, effectively resetting

the stack size to zero. At this stage, implementing and testing in Quartus began.

implementation

Figure 9 — Situation needed for stack address

y=fib(n-1);n=3 (Stack address ug, y=fib(n—1);n=2 pSackaddressupy} \_y 4 fib(n—2);n=2

Stack address down

The stack pointer (Figure 10) was implemented using a counter and an adder; The counter would
increase when the ‘up’ input was high as it was connected to the count enable of the counter.
Decreasing the address of the counter by 2 was done by connected the ‘down_two’ input to the

‘sload’ port of the counter and having the input address as always equal to the current address minus
2.
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Figure 10 — Stack Pointer
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The first error encountered is seen in Figure 11. The problem was that the function was not returning
to previous recursions correctly, it would only continue to perform OP2’s (Figure 7.1) until the current
value of ‘n’ was less than two, at which point it performed an OP3 (Figure 7.1) meaning that any initial
input of ‘n’ yielded an output y of two. It was clear that there needed to be a way to distinguish when
an item in the stack had been completed and the stack pointers value had decreased. This was done
by inserting in a delayed input of the ‘down_two’ signal back into the main operating block, resulting in
different operations when there was a ‘down_two’ output last clock cycle.
Figure 12 — Verilog when down_in is high
Eewsge;n( (op_in[4:0] == 5'h00010) && 'ONE & 'down_in) // y = fib n - 1 where n - 1 '<= 1 without previous down
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Figure 12 is the Verilog code for the situation depicted in Figure 9 after the stack address is
decreased by two. It also meant that somehow when the items were complete, the y value needed to
be stored and inserted back into the old instruction the stack pointer is pointing at, which resulted in

the use of a carry in and carry out mechanism.

Figure 13 — carry_out delay block
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Figure 13 works by taking the y output that needed to be re-inputted into the main operating block
(carry_out) and inputting it into a counter which would then update at the next clock cycle. This meant
that the ‘carry_out’ value would be inputted as the new ‘carry_in’ value one cycle later when the stack

address is lowered. This value would then be used as seen in Figure 12.

At this point in time some changes to the original opcode format for the task were made this new

format is explained in Figure 14.

Figure 14 — New opcode format

Opcode name | Binary value | Significance

OP1 00001 Used for the initial fib(N) instruction directly from the instruction
RAM

OoP2 00010 Used for the first iteration of y = fib(n — 1) where n = N

OP3 00011 Used for the first iteration of y =y + fib(n — 2) where n = N

OP4 00100 Used for the all other iterations of y = fib(n — 1) where n # N

OP5 00101 Used for the all other iterations of y = fib(n — 1) where n # N

Once these changes were made a timing issue was spotted. There was a delay between the
changing of the stack pointer address and when the correct set of data would be outputted. This was
previously unnoticed since the settings of the RAM used for the stack were such that when the

address is changed and the stack is being written to, the output of the stack would always be the new

Page 16 of 71



value that was being written to it meaning there was no delay between when the value was inputted
and when the stack outputted the value. This however meant that when the address of the stack
pointer was changed and the stack was not being written to, the stack would take an extra cycle to
output the correct values.

This was solved by implementing a general delay which meant that the main operating block would
only change its outputs every other cycle to ensure it was receiving the correct outputs from stack.
Figure 15 shows how this delay was implemented. When ‘delay_in’ is high, the main operational block
does nothing and ‘delay_out’ is set to low; when ‘delay_in’ is low the block would operate normally
and ‘delay_out’ would be set to high.

This meant that several input variables as well as write enables also had to be delayed for everything

to operate at the correct timing. This resulted in a doubling of clock cycles needed to complete a fib(n)

instruction.
Figure 15 — delay flip flop
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Now operation was fine for a single execution of the Fibonacci function. Additions to the circuit were

made to allow for multiple executions of the function to be made in a row.

Figure 16 shows an output block for the Fibonacci task which takes inputs from the main operating
block and had outputs that included: a ‘complete’ output signal that indicates when the main operating
block finishes executing its current instruction, the ‘final_answer’ to the current instruction, and a

‘reset’ output so the stack pointer points to address 0. This was implemented using a verilog file.

Figure 16 — Fibonacci output block
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A problem arose when automating the fetch cycle of the Fibonacci block (this is discussed later in the
section regarding the optimized complete architecture) for it to take multiple inputs in a row. The error
was that it would not work for initial values of ‘n’ that were less than two, which did work prior to
automation. This was solved by introducing a separate operating block for cases where the initial ‘n’
was one or zero (Figure 17) which had an enable input, that was high when an ‘n’ coming from the
data RAM was less than two, and had output: ‘'y_one’ (which was always equal to one in sixteen-bit
binary), ‘select_one’, and ‘complete_one’. As a result, BUSMUX’s had to be connected to the inputs
of the output block (Figure 16) in order change whether it took ‘answer_in’ from the main operating
block or the block in Figure 17.

Figure 17 — Block for fib(n) where n <2

fib_ 0_n_1
needed y_oneg[15..0]
complete_one_plus_one select_one
select_one_plus_one complete_one
Task_1_N_less_2 verilog

After testing another problem was identified which was a consequence of the delay mechanism
(Figure 15); The block was in effect just a clock with half the cycle speed of the actual clock.
Consequently, if the main operating block would receive the initial fib(n) instruction, from the
instruction RAM, when ‘delay_in’ was high, the whole Fibonacci block would not work. This was
solved simply by extending the time in which the initial inputs of the main operating block come from
the instructions register (Figure 18).
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Figure 18 — BUSMUX for op_in of main operating block

Parameter|Value

Type

5

Unsigned Integer .

-, stack out[36.32]:

BUSMUX
dataal]
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- nstrygiion RAM[15:11]
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Final operation

Figures 19 explain the operation of the complete Fibonacci block.

Fibonacci_V4

op_in[4..0]
n_in[15..0]
y_in[15..0]
y_in_carry[15..0]

down_in

delay_in

y _out_

op_out[4..0]
y_out[15..0]

n_out[15..0]

carry[15..0]

complete

stack_write

up

down_2

delay out

Task_1_verilog

Figure 19.1 — main operating block
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Figure 19.2 — Simplified diagram of Fibonacci block
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Figure 19.3 — Table of operation for Figure 19.2

Component Name

Reference Figure Number

Function

Opcode BUSMUX

13

Used to change where the main

operating block gets op_in from

n BUSMUX

13

Used to change where the main

operating block gets n_in from

Main operating block

141 & 12

Describes figures 12 and 14.1 combined
and is used to alter the value of the stack
pointer. Also outputs the value to be
written to stack. And controls the output
block.

Output block

11

Outputs the final answer and a
“complete” signal the cycle the fib(n)

instruction is complete

Stack Pointer

Contains the current address to stack

Stack

Used to store intermediate values during
operation
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Final tests were conducted to illustrate that the block worked for single and multiple instructions in a
row, as shown in Figure 20, and was now ready to be implemented into the complete architecture.
The main cause of problems throughout the design process of the optimized Fibonacci block came
from the physical restrictions of hardware components, either in the form of delays of clocked
components or the difference between the theorised operation and actual operation of certain blocks.
Overall, no major problems arose due to time spent planning the process and designing on paper

before implementing anything into Quartus.

Figure 20 — waveform of working Fibonacci instructions

valueat| [ 4200 ns 440.0 ns 460.0 ns 480.0 ns 500.0 ns 520.0ns 5400 ns 560.0 ns 580.0 ns 600.0 ns 620.0 ns 640.0 ns 660.0 ns 680.0 ns

Name
Ops

icLoEK uo

B > finalout uo B L o 3
% instruction uo 2048 2050 2052

& ° pam + uo 4 1 4 3
Instructions used for test were fib(4), fib(1), then fib(3) Ignore RAM state here

Task 2 — Random Number Generator

The Multiplication Block

This block computes binary multiplication by performing series of shifts and additions. This method
can perform multiplication of sixteen-bit integers in a single cycle as it pipelines the adders. The
resulting circuit (Figure 21) is composed of two parts. The first a Verilog file performing the shift; One
of the two multiplicand word is taken as argument (A) and the other (B) is used to decide when to
perform the shift on the argument. Every time a bit of B is high, a shift left is performed ‘N’ times on a
copy of ‘A’, ‘N’ being the position of the high bit in ‘B’ (if the ‘N’ bit of B is 0, the copy will just be set to
zero. The second part consists of a pipelined series of adders adding two of the shifted copies of A at
time. Since the Verilog block and the adders are not clocked, the process is not subject to any delay
and the result will be ready in the next cycle. Since word length of the integer variables used is
limited, if the resulting number exceeds sixteen bits, the result will be different from the calculated

expected.
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Figure 21 — multiplication block

Random number generation logic

Figure 22 — code from the specification

int Icong( const unsigned int a, const unsigned int b, constint n, const unsigned int s) {
unsigned inty =s;
unsigned int sum = 0;
for(inti=n;i>0;i-){
y =y*a + b; // calculate the new pseudo-random number
sum =sum +y; // add it to the total }
return sum; }

At first, the linear congruential generator was designed manually, then implemented on Quartus. The
circuit was designed to execute the above code (Figure 22) using the multiplication unit and two
addition units (Figure 23) one implementing ‘y = y*a + b’ and the other ‘sum = sum + y'. A block was
created to implement these additions and was implemented in the final task 2 circuit.

Figure 23 — addition unit
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Complete Task 2 Circuit

The final circuit used a loop connecting the outputs ‘sum' and ‘y' to the corresponding inputs. Two
multiplexers were placed to choose the starting values of y (input) and sum (zero when initialised) for
the first cycle of the loop, when a start input for the whole task is high. Another MUX was used for the
output stage selecting zero unless the complete output of the task is high, in which case the MUX

outputs the final value of ‘sum’.

An additional block was included in the complete task 2 circuit (Figure 24) that sets the maximum
number of loops allowed (given by the input ‘N’). The final circuit was made with a Counter and an
Adder that subtracted ‘N’ from the output of the counter. When the difference between the two values
is zero, a complete output is produced by a Verilog block, disabling the counter, and enabling the
output stage of the task. The start output is also used to clear the counter so that is set again to zero

at the beginning of the next instruction.

After testing the circuit noticed that the main operating block had undefined behaviour. This was
solved by clocking the inputs to this block using DFFs ensuring that the block would only change

outputs once a clock cycle.

Figure 24- complete task 2 circuit

LM DF
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Final Testing

The task was compiled into a single symbol and was tested to check the functionality with given
inputs. The inputs required by the circuit are the values of ‘A’, ‘B’, and ‘S’ (from the Data RAM) and ‘N’
(set to 16 according to the specification [2]), the clock input and the start input (later automated using
a state machine). The outputs produced are the final ‘sum’ value and a ‘complete’ output, that will be
used increment program counter. Other additional test outputs were made to check intermediate
values during operation.

After testing the circuit with different inputs, it was confirmed that when the start input high for one
cycle (excluding the first cycle) instruction starts to be executed and the loop continues (Figures 25).
This is shown by the changes in the intermediate values and stops when counter reaches the
maximum value (sixteen cycles). Comparing the final output with the manually calculated answer
confirmed the circuit is working as expected. Figures 25 are the two most relevant tests results which
confirm the behaviour previously explained. The task 2 circuit was now ready to be implemented into
both CPUs since it already optimised.

Figure 25.1 — test waveform

Name  Valueat [0 ps 200 ns 409 ns 60.0 ns 8001 3200 ns 4000 ns 4800 ns 5600 ns 6400
Ops Ops
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® st U1 S e
® > pcout vO o X4 X2 X x4 8 X6 N9
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» A u20
&8 u3
& N us
& S u1
# O check.. UO ) X23X_a86 X 9749 X 63940 X 33651 X 17698 X IEEEEEEEEEEEENE!
& > check.. U1 1 X23)X_a63 Y9263 X 5a191 X(35247 X 49583 X _ )
@ > TEST.. LO 0 X 23X as6 X 9749 X 63940 X 33651 )
® > TEST.YUO (o X 1 X 23 Xa63 X 9263 X 54191 X 35247 X
@ > yinte.u3 (3X 23 X463 X 9263 X 54191 X 35247 X (49583 X L
& >wnewsm U3 (3 X 23 X486 X 9749 X 63940 X 33651 X 17608 X _
Figure 25.1 — test waveform
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Task 3 — Linked List Search

Selection an Implementation Method

Multiple implementations were initially considered before settling on the following method. The linked
list was implemented by storing both elements (value and next pointer) of an item into the same
memory location using a twenty-eight-bit wide data RAM. The 12 MSBs of the word contain the
address of the next pointer and the 16 LSBs contain the value. This method to be simpler in terms of

implementation and more effective since it does not require any new piece of hardware.

Indirect Addressing and Reqisters

A register was needed to store the memory content and the current address while traversing the
linked list. It was decided that an indirect addressing block would be in the final general CPU which
allows for different operation on linked list (e.g. inserting a value). It was noticed that the task itself
does not require indirect addressing since a comparator can be used to know if the search value is
not found, the 12 most significant bit of the data out can be directly fed into RAM. Consequently, the
task used a register to control when the address input into the RAM changes, and a comparator that

produce ‘complete’ output if the value coming out of the RAM is the search value.

Control inputs

The output stage consisted of a multiplexer that outputs the current address, if the value at that
address corresponded to the search number, or a series of zeros otherwise. If the address of the
found value is zero, it could be misinterpreted if the value were found or not. To solve this a signal
was made indicating when the task is done so that the CPU can recognise when the task is and the

found address is zero.

A block was made to identify when the next address is a null pointer, this produces an output
(value_not_found) that stops the search by disabling changes in the register containing the address
and enables the CPU to execute the next instruction. The ‘complete’ signal comprised of both the

‘value_found’ and the ‘value_not_found’ signals.
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After running initial tests, it was identified that very first cycle of the instruction the complete output

signals was high. To avoid the block ending the instruction before even beginning to execute, a

verilog block was implemented that when the enable is high whenever start is high or, both ‘found’

outputs are low. The start input is also used to clear the comparators. The final circuit is seen in

Figure 26.

Figure 26 — complete output

traverse_linked_listbdf %)

test_foundvalue 1.mif
BRAQYASCES-OTTINN JO NN B AQa b3

r"

Q Compilation Report - EE1project

Final Testing

The circuit was compiled into a single symbol file and connected data RAM. The initial inputs needed

by task block are the starting address and the search value a clock signal and the start value. The

final outputs are the memory address where the value can be found and the two ‘complete’ signals.

A MIF file was made to test the case in which the value is found (Figure 27), and one that test a list

that leads to the break condition/null pointer (Figure 28). Additional outputs were added to check the

entire functionality. The two simulations showed the expected outputs both in terms of the final

address and the behaviour during operation.
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Figure 27 — test MIF file “value exists” and corresponding waveform
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Figure 28 — test MIF file “value does not exist” and corresponding waveform
Addr +0 +1 +2 +3 +4 +5 +6 +7 ASClI

0000 0030001 BOBOOOA 0000000 0010005 0060002 0000000 0084000 0000000 ..
0008 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 ...
0010 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 ...

0018 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 . .

Jalue a ‘OPS 8090 ns 1600 ns 2400ns 3200ns 4000 ns 4800 ns 560,

Name as: lovs
e lax so |JUUUVUUUUUUUUUUUUUTUUUU VUV UUUVUUUUTUU U U vUuvivuuvun
!B start 81 BE
i. > start_value_addr H000 |f 000
(& > value H 0002 0002
e TS ¢ ||| |
ZU > check_dataout  H 0000/ [00X0001 X0005 ) 000A
|# > check_necaddr 000 | 100(003 X001 ) 000
[@ > address_value_fo.. H 000 000
1

The final version of this task takes as many cycles as the number of nodes traversed due to final
optimisations made prior to implementing in the general circuit.

Page 27 of 71



Optimizing Task 3 —

Linked List Search

To form the optimized block for task 3, alterations were made to the original block so that it would

operate with a sixteen-bit memory word length. Changes that were made involved changing bus

widths as well as introducing a block connecting the next pointer address input to the search address
output, these changes can be seen in Figures 29.

Figure 29.1 —unchanged task 3
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Figure 29.2 — highlight of changes made to Figure 16.1
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Outputs value_A_address and next_B_address are the address inputs for port A and B of the data
RAM meaning that item value and next pointer can be fetched at the same time. These changes were

implemented with the assumption that the “value” and “next” pointer of each item in the linked list

differed by 1 in their memory location and were made to take advantage of the RAM being a 2-port

RAM instead of the 1-port in Figure 29.1. This was then tested for single and multiple inputs to ensure
outputs were still correct (Figure 30).
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Instructions were a linked list

where the search item existed, Figure 30 — working waveform for 2 linked list search instructions
then one where it did not. : :
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Task complete and address was found.

Task complete and item was not found
(defaults to 0 as the ouput).

Figure 31 — logic for task 3 “complete” signal
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Figure 31 is a complete output signal that was formed by ANDing the ‘found’ OR ‘not_found’ signal
(which indicate if the search value does/does not exist in the linked list) with NOT ‘start’ (which was
set to low during operation and high otherwise). An assumption was made with the implementation of
this task for the non-general CPU, the “Next” pointer value for any item in the linked list could never

be zero (unless it was a null pointer).
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The Complete CPUs

Initial decisions

The CPU is characterized by a flexible design that can adapt the task blocks to execute other

instructions relating to the task as well as additional unrelated instructions such as load and store.

Both CPUs have the following general characteristics: two separate RAMs (Data and Instruction), the
use of 16bits word for data path, the use of one only instruction that take multiple cycles to execute a
specific task, following the CISC model of architecture [5] since found it to be faster in terms of clock

cycles than executing multiple simple instructions.

The General CPU
Overview

This CPU is characterized by a flexible design that can adapt the task blocks to execute other

instructions relating to the task as well as additional unrelated instructions such as load and store.

The CPU was first designed on paper, listing all the elements needed to perform the most basic tasks
(load, store etc.). Then it was built in Quartus (Figure 32) and after testing the functionality of the
control and data paths, the specific tasks’ blocks were added. Adjustments to the general circuit were
made to produce the needed inputs. A block was created and to implement the option to fetch the
inputs for task 2 and 3 by either indirect addressing or by fetching from a register.

Figure 32 — General CPU design file

uction section
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ISA

Since the tasks performed by the CPU require different information in the instruction word, every
instruction is divided differently. If the two most significant bits [15:14] are both 1, the opcode will be
four bits long [15:12] otherwise the opcode is only 2 bits. Depending on the instruction, the rest of the
word contain either a RAM address or a registers address in which the address/value is stored
(Figure 33) explains the instruction word structure and provides more details on the functionality of
each operation.

Figure 33 — ISA for the general CPU

instruction opcode Requirements info included Enables required Addressing mode and functionality
in the instruction use of registers
(corresponding bit word)

LDR 00 Address (13-2), Ra Wr_en_reg Indirect addressing Load value from ram to
(destination reg) (1-0) register
STR 01 Address, Ra (source reg) Wr_en_ram Indirect addressing Store value from register
(1-0) into ram
LDI 10 value N {13-0) Acc_en Direct addressing Load value N into
accumulator
Mov 1100  Ra (destination reg) (1-0), Wr_en_reg Indirect addressing Move value from one
Rb (source reg) (2-3) register to another
LCG 1101 Ra (A) (1-0), Rb (B) (2-3), Acc_en, start 2 Indirect addressing or Generate a random number
Rc (S)(4-5), value in a register using a linear congruential
mode of addressing (11) generator
FIB 1110 address (11-0) Acc_en, start 1 Direct addressing Calculate the Fibonacci
function of an input
LIS 1111 Ra (starting address) (1-0), Acc_en, start 3 Indirect addressing of Search a value traversing a
Rb (value to be found)(2-3), value in a register linked list

mode of addressing (11)

Instruction section and control path

This first section (Figure 34) of the CPU is composed by:

e Program Counter: incremented by the decoder at the end of each instruction it contains the
instruction RAM address.

e Instruction RAM: initialized to have a test program.

e Instruction Register: updated with the contents of the instruction RAM at the beginning of
each fetch state.

e Decoder: enables control lines based on the current state and instruction

e ‘Next instruction’ Block: defines when a task is complete, and the next instruction can be
fetched

e ‘Accumulator input’ Block: that defines which sixteen-bit word is input into one of the four
registers

e Accumulator and “indirect addressing” block: four register that can be written to and read from

(three at time: Ra, Rb, Rc). Register 0 can be used as an accumulator
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Decoder and state machine block

Both are controlled by a counter (PC) (Figure 35) that counts the number of cycles passed, resetting

at every new instruction;

e PC 0,1,2 state: “fetch instruction”
e PC 3,4, (5 for LCG) state: “fetch data”
e PC 5 (6 for LCG) state: “execution”

The counter stops during the execution and it is cleared when the instruction is done. After testing, a

co-dependency between the state machine- decoder block and the next instruction logic was

identified. Since they are both combinational logics, if one changes, the other does, resulting in a loop
causing an error in the waveform. A multi-bit wide DFF was added (Figure 34) giving a one cycle

delay between the changes of the two blocks, avoiding loop. For the same reason, a DFF was
inserted between the output of the current state of the state machine and the inputs of the previous

stat (Figure 35).
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State machine

There are three possible states:

e ‘“Fetch instruction”: the program counter increases by one, the new instruction is fetched from
the RAM during cycle 1 and 2 of the state machine counter (considered two cycles for the ram
to output the new value since the first implementation involved a register at its output stage).

e “Fetch data”: cycles 3 and 4, the address of the data RAM is updated, and it outputs the
variables needed for the task to execute. since two values are fetched at time and LCG needs
three input values, this state will extend until cycle 5. At cycle 3 the IR is updated.

o “Execution” of the current task: this state continues until the “next instruction” input is high.

The state machine takes as inputs the output of the state machine counter, the previous state, the
current state, and the output of the next instruction block delayed by one cycle. The outputs include
the current state which is equal to 10 during the execution state, 01 if in fetch data, and 00 in any
other case; Along with all the start inputs for fetching data and enabling execution of a specific task.
The “start fetch” output is high at the first cycle of fetch data. The start2 (LCG) and start3 (LIS) outputs
are high the first cycle of execution state and since FIB (task1) works slightly differently than the other

two, the startl output is high during all execution cycles.

Pipelining these states would only be partially possible since:
e It cannot be forecast when certain instructions will end their execution given their variable
execution times.
e Fetching data cannot be done until the instruction is fetch (the addresses are not known in
advance since there are contained in the instruction word)

e The execution cannot happen before fetching the data input

In the implementation given the only pipelined stages taking places are the execution of LDI, STR,
MOV and LDR during the fetching state of the next instruction since these operations require only one
execution cycle (LDR takes two and has one cycle pipelined) and involve only the content of the data
RAM and the registers. Further optimizations have been done to the non-general of the CPU, more

relevant than this one in terms of performance.
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Decoder

Here most of the control inputs are defined based on the state, the current cycle number, the opcode
coming from the instruction register and the “next instruction” input. The Verilog code implements the
following logic:
e The accumulator is enabled whenever one of the tasks requires to store a result in it (FIB, LCG,
LIS, LDI) and is loaded in the instruction register and the “done” output is high.
e The program counter fetching the next instruction address is enabled whenever the “next
instruction” output is high.
e The instruction register changes its content whenever the fetch_data state starts.
e The write enable for the registers of the indirect addressing block is set to 1 whenever one of
the instructions that requires to write in a register (LDR, MOV) is complete (Figure 36).
e The write enable of the ram is high during an STR instruction when it has been completed
(Figure 36).

Next Instruction Block

This block outputs when an instruction is completed. Since there are different timings/execution length
for each instruction, each task block has a “done output” that is high when the instruction is complete.
Both the program counter and accumulator enable depend on this. Depending on the current
instruction, the ‘next_instr’ output (Figure 36) follows different logic:
e STR, MOV and LDI do not need execution cycles since their execution happens between the
‘fetch_data’ state and the ‘fetch_instruction’ of the next instruction (pipelined); Since the
‘done’ output is delayed by one cycle “next instruction” output will be high already in first cycle
of ‘fetch data’.
e For LDR an execution cycle is needed (using the ram requires an addition cycle).
consequently, the output will be set high at the first cycle of execution.
o For the specific tasks, they have been implemented so that there is one done output for LCG
and for FIB, while for LIS there are two. Therefore, the ‘next instruction’ output will be high

whenever one of those instruction are completed.

Figure 36 — next_instr code

assign next_instr = (done2&lcg&!start2&exec) | ((done3|value_not_found)&lis&!start3&exec)
| (exec&1dr) | (fetch_data&(ldi|str|mov)) | (donel&fib);
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While running tests, an additional condition was added as an assertion after incurring in errors;
Sometimes the task would produce a done output while fetching the input at the start and would not
execute. Consequently, stated that any done output can be high only when start input is low. Having
the state machine be reset by the complete output of the current task makes the control path very

flexible in implementing additional instructions with undefined number of cycles.

Testing the Control Path

Some tests were done at this point of the implementation to check the functionality of the control path,
focusing on the state machine timing. As can be observed in Figure 37 the state machine and

decoder outputs behave as expected. In Figure 38 it can be noted how the entire control path works.

Figure 37 — state machine and decoder test waveform
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Figure 38 — control path test waveform
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Data section

This section is composed of the data RAM, the logic block defining which data to be input in the RAM
(current address and value to be written), the accumulator, and the indirect addressing block with the

logic block defining the data that’s loaded into the registers.
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Indirect Addressing and the Accumulator Block

This block (Figure 39) consists of four registers (r0, i.e. the accumulator, r1, r2, and r3) and can
perform different and more complex operations from the ones required by the specification [2] thanks
to the two modes of operation it uses:

e RO can be used as an accumulator, enabled by the input defined in the decoder and loaded
with the data defined by the logic block “accumulator input”. Using an LDI instruction, the
accumulator can be loaded directly with a value provided in the instruction word’s 14 least
significant bits.

e All four registers can be loaded either with a value coming from the data RAM output (LDR) or a
value contained in another one of the registers (MOV). The Ipm_decoder defines which of the
four registers is written by enabling only one of them using a two bit select line (the two least
significant bits of the instruction word) and loading the data from the “data_in” port.
Simultaneously to the write operation, three register can be read from. Those register are
selected by three multiplexers with control inputs respectively bits 0 and 1 (Ra), 2 and 3 (Rb), 4
and 5 (Rc) of the instruction word. The data outputs do not need to all come from different

registers, but one will always be the same as the one written (Ra).

Figure 39 —indirect addressing and accumulator block
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Accumulator Input Logic Block

This Verilog file defines which data word should load in the accumulator/one of the registers:
e Accumulator: depending on the current instruction (LCG, FIB, LIS or LDI) the “data_in” input will
be set to the result of taskl, 2, 3 or the least 14 significant bits of the LDI instruction word
e Register: depending on the current instruction the “data_in” input will be the output of the RAM
(STR) or the content of the source register (MOV) and will be written into the register

corresponding to the two least significant bit of the instruction word (Ra)

Additional Observations on the Timing of the Load Operation

Since for STR and MOV the execution of the instruction happens during fetch states to reduce the
number of cycles of those instruction, thus, the execution state never occurs, the written register will
be loaded before the instruction register actually changes. Therefore, a need to use the output of the
instruction RAM, instead of the output of the IR, for all the control input of those two instructions was
necessary. At the same time, after testing LDR, it was evident that this is the only instruction that
writes to registers after the execution, when the instruction RAM output cannot be taken as it is
already changing to fetch the next instruction, but the IR keeps LDR. Consequently, a bus mux has
been added before the indirect addressing block input port to choose the register based on the

instruction word coming from the RAM or the IR, depending the last instruction fetched.

Data RAM and Input Data Logic

Since there were no restrictions on the width of the data word in the memory [2], it was set at twenty-
eight-bits wide; The twelve most significant bits are not be used if not dealing with a linked list. It was
also decided that a two port RAM be used so that two values can be read at the same time, halving
the time needed to fetch data.
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An additional Verilog file defines which address and data are input into the data RAM, given the
control input “start_fetch” is high and the current instruction is:

e LIS (indirect addressing): addrl from the register ‘A’ (starting address) and addr2 from Rb
(value to find) (0-1 and 2-3 bits of instruction word).

e  FIB (direct addressing): address is directly in the twelve least significant bits of the
instruction word (argument of Fibonacci function).

e LCG: since this instruction needs three inputs, it cannot be fetched in one cycle. The first
cycle, when start fetch is high, addrl (content of Ra) fetches ‘A’ and add2 (content of Rb)
fetches ‘B’. On the second cycle addr 1 (content of Rc) fetches value of ‘S’. The ‘start fetch’
input is delayed by one cycle with a flip-flop and is used as select line (fetch2_lcg) of a mux
that, when high, selects the address of ‘S’ from the first port (add1_next, second cycle of
fetch data state). Therefore, the fetch data state for LCG instruction needs one additional
cycle.

e STR or LDR: address found in bits thirteen to twelve of the instruction word.
The “data_in_ram” input (twenty-eight bits) is needed only with store instructions, in which case the

sixteen least significant bits are equal to the output of ‘Ra’ with the twelve most significant bits set to

Zero.

Implementation of the specific Tasks and Testing

Finally, the blocks of the specific tasks were implemented and connected to the required input and
outputs. An additional option was introduced: if the 11™ bit of the instruction word of LIS or LCG is
high, instead of fetching the input values through indirect addressing the registers addressed by the
instruction word directly contain the input value. Several tests were ran at this point, to check the
functionality of each of the seven instructions, comparing the outputs with the predicted ones
calculated on paper, and multiple instructions in series, verifying the CPU worked with various
combination of operations in sequence. Below (Figures 40 to 43) are two of the most relevant
waveforms generated by the CPU using different MIF files both for the data and the instruction RAM.

TEST1

Given the following content of the data RAM (address in decimal, data in hex)

Figure 40 — test 1 MIF file

Addr +0 +1 +2 +3 +4 +5 +6 +7 ASCI
0 00003EE 0000003 0000014 0000401 0000005 000000D 0000000 0000000
8 0000001 0000002 0000003 0000004 0000000 0000000 0000000 0000000 .
16 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000
24 0000024 0000020 0000000 0000000 0000000 0000000 0000000 0000000 5

32 02300017 0000000 0000000 0260003 0000000 Q000000 01BOOZ4 0000000
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FIB 0x009 (green); LDR 0x000 R1; LDR 0x001 R2; LDR 0x002 R3 (yellow); LCG R3 R2 R1 (orange);
LDR 0x003 R1; LDR 0x004 R2; LDR 0x005 R3 (pink)

Figure 41 — test 1 waveform
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TEST 2
Given the following content of the data RAM (linked list)

Figure 42 — test 2 MIF file
Addr  +0 +1 +2 +3 +4 +5 +6 +7

0000 0030001 004000A 0000000 0010005 0060002 0000000 0084000 0000000
668" 00200001 0000000 0000000 0000000 0000000 0000000 0000000 0000000

0010 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

LDI 2 (yellow); MOV RO R3 (green); LIS R3 (address of the value to be found = 0000) R2 (address of

the starting address= 001) (orange)
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Figure 43 — test 2 waveform
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During the optimization process, the register present at the output inside the RAMs were removed,

speeding up the fetch process by one cycle. Some possible improvements to this circuit would be to

add a jump instruction or an arithmetic one. Both these ideas would be fairly easy to implement: the

first one would require adding an ‘if statement in decoder (if the opcode of IMP is present the state

machine returns to the first cycle of fetch data and program counter output is equal to the address in

the jump instruction). While for the second suggestion, an arithmetic unit (ALU for addition or

subtraction, same multiplication unit used in task 2 for multiplication or slightly modified one for

division) at the output of the accumulator would be added, making minimal changes in the data_in

logic block. Another instruction that could be implemented is stop, by adding a Verilog block at the

output of the instruction RAM with the following logic: if JIMP opcode, all enable set to low, included

the one of the program counter of the state machine.
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Optimized CPU

The optimized complete architecture uses the altered Fibonacci and Linked List blocks as well as the
unaltered LCG block as the basis for its main computational unit. For these blocks to operate
together, a common instruction register/decoder (IR) had to be created. To minimize the amount of
code in the Verilog block for the IR, it was split into four units. One task specific decoder for each of
the 3 possible operations, and a general IR whose sole purpose was to act as an enable line for each
of the instruction specific decoders, and ensured that no operations were taking place when the
address of the instruction RAM, which comes from the program counter (PC), was changing (Figures
44),

Figure 44.1 — input into general IR to disable operations during PC address changes

© PCUP_STR " = EORZ T '— instruction[15..0]

— W — PC_not_ready

- fLOoCK

High for the cycle the PC | -
- increases and the cycle . General_IR_Verilog
_3TR" | thereafter. L

Figure 44.2 — Verilog code for general IR

1 poduTe TR_1 n_2 n_3_v2

2

3 B(

4 input [15:0] instruction,

5 input PC_not_ready,

6

7 output fib_needed,

8 output lcg_needed,

9 output 11s_needed,
10 output str_needed
11 );
12
13 wire [4:0] opP;
14
15 assign OP = instruction[15:11];
16
17 assign fib_needed = (OP == 1) & !PC_not_ready;
18 assign lcg_needed = (OP == 2) & !'PC_not_ready;
19 assign 11s_needed = (OFP == 3) & !PC_not_ready;
20 assign str_needed = (OP > 7) & !PC_not_ready;
21
22 endmodule

Figure 45 illustrates how the control lines from the general IR acts as an enable line for the task

specific decoders.
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Figure 45 — Output of general IR and how it enables the task 3 (linked list) IR
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When a task specific decoder receives the instruction data it performs its own fetch cycles to ensure
the main task specific operating block has all the correct input before it starts operating; Each main
operating block has some form of a direct or indirect enable line which stops it from operating. This
required a different number of cycles, which were timed using a counter for each task. The

implementation of the counter and each of the task’s IR operation is depicted in Figures 46.
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Figure 46.1 — Task 2 (random number generator) IR and its counter

through the count value.
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Figure 46.2 — Fetch process for each task

Task Counter Value Operation
Fibonacci 0 Fetches ‘n’ from Data RAM
1 Inputs n into main operating block and
enables it
Random Number 0 Fetches A and B
Generator 1 Fetches S
2 Inputs variables into main operating block
and enables it
Linked List Search | 0 Fetches ‘head address’ address and search
value address from registers
1 Fetches head address and search value from
the Data RAM using address’ stored in
registers
2 Inputs these values into the main operating
block and enables it
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Other components added into the general architecture included a PC and an Accumulator (Figure 47),

both implemented using counters with different settings and use the “complete” outputs of each task

block to alter their current value.

Figure 47 — Program counter and Accumulator
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A 2-port RAM block (with eight, eleven-bit words), which was to be used for the indirect addressing of

task 3, was added. To initialise variables into this RAM, a 4t instruction was needed which loaded

addresses into the RAM directly. The execution of this instruction was implemented and tested to

ensure the correct values were written to the correct address.

The final complete circuit can be split into distinct sections as seen in Figure 48. At the start of each

new instruction the general IR selects which task specific block is needed for the task. Once the task-

specific decoder performs its fetch cycle and the main operational block executes the instruction, the

output is automatically stored into the Accumulator and the Program Counter is incremented by 1.

Page 44 of 71



Figure 48 — Complete non-general circuit
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The CPU was tested with Figure 49 being the format for the assembly line code used. To confirm that
all the components correctly operated, the CPU was tested with Figure 50, this format is unique to the

non-general CPU.
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Figure 49 — Table translating the binary instructions to an assembly line code

Assem

bly Line

Binary

Fibonacci Task

Operand Address of n Opcode Address of n [10:0]
[15:11]
FIB Data RAM 00001 Data RAM
Random Number Generator Task
Operand Address of a Opcode Address of a[10:0]
[15:11]
LCG Data RAM 00010 Data RAM
Linked List Search Task
Operand | Search value Head address | Opcode [15:11] | Search Head address
address value [2:0]
address
[5:3]
LLS Task 3 RAM 00011 Task 3 RAM
Loading Values to Task 3 RAM
Operand | Address Value Opcode [15:14] | Address Value [10:0]
[13:11]
LDR Task 3 RAM Integer <= 2K | 01 Task 3 RAM | Integer <= 2K

Figure 50 — CPU test code
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Figure 51 is a waveform that shows the instructions executed correctly through the changing
Accumulator value, the default for an LLS value when the search value does not exist in the linked list

is to update the accumulator to 0.

Figure 51 — waveform corresponding to Figure 50
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Now the complete circuit was ready for functional tests to find maximum clock speed and power
consumption along with the main bottlenecks of the circuit to further optimize the performance. Since
all the task specific blocks were already tested no noteworthy errors were encountered during the
creation of the general architecture, the implementation of task specific blocks was made easier

through communication between the members who originally designed them.

Functional Analysis and Optimisations
When analysing the block, the main parameters that we are looking to improve upon are:

e Maximum clock frequency (Fmax). Ideally, we want a clock frequency of 100MHz.

e Power dissipation
o Total Thermal power dissipation (excluding I/O power dissipation)
o Dynamic Thermal power dissipation — Power dissipated from the switching of signals
o Static Thermal power dissipation - Power dissipated from the circuit being on

e Total number of logic elements

Initial CPU Comparison

Slack — “the margin by which a timing requirement was met or not met. A positive slack value,
displayed in black, indicates the margin by which a requirement was met. A negative slack value,

displayed in red, indicates the margin by which a requirement was not met [6].

General Non-General

Fmax (MHz) 52.71 91.94
Largest slack -8.970 +0.877

Total power dissipation (mW) 297.43 68.67
Dynamic power dissipation (mW) [197.56 25.66

Static power dissipation (mW) 99.87 43.01

Total logic elements 1737 895

Total registers 453 170

Total block memory bits 3,325,953 66,808
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Initially, the non-general CPU was displaying much more desirable values and the slack was very low
compared to the general CPU. Additionally, the power consumption is about 4-5 times lower with the
number of logic elements being about half. A significant value here is the number of memory bits

which requires attention to.

Optimising the General CPU

The performance of the general CPU was limited by the Fibonacci block which made it the focus of

optimization.

Initial analysis

Properties Values
Max clock frequency (MHz) 19.78
Total thermal power dissipation (mW) 237.4
Dynamic thermal power dissipation (mW) 138.14
Static thermal power dissipation (mW) 99.26
Total number of logic elements 1085

The main issue causing these undesirable values came from the extreme stack size of 65536
addresses and 3,145,728 bits (due to the word length being 48 bits). Further research into how stack
space would be used up when calling a function showed that for an input parameter of n, n address
spaces would be needed. This means that the current configuration allows for a maximum input of
65536 which is unnecessarily high; due to the how the expected input parameter is supposed to be
quite low. The stack size was reduced to 32 addresses and as the address length could be reduced to
5 bits, the word length was reduced to 37 bits. As a result, the stack now uses 1,184 memory bits.

As stack traditionally uses space in the main memory (in this case the data RAM), it was appropriate
to evaluate the effect of moving the stack into the RAM. Currently the number of memory bits used by
the data RAM is 114,688 and the address length is 12. To accompany this address length, the word
length used with the Fibonacci block would have to be extended to 44 which consequently extends
the RAM’s word length from 28. This would increase the total number of memory bits by 64,352 which
is much higher than the increase 1,184 memory bits when the stack is separate from the data RAM.

Consequently, the stack was kept separate from the data RAM.
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There was also a plethora of minor changes such as:

e Replacing the register that stored the previous value in addition conditions with a d-type flip

flop. This removed the need of a load signal to be output from the ‘valuecheck’ block.

e Reducing the bit count of values used in the state machine and the ‘InitialCounter’. The state

machine only used 4 states and the counter’'s maximum value was 3 meaning both needed a

minimum of 2 bits to function properly.

¢ Deciding to use a counter to store the final value instead of a register.

Properties Counter Register
Fmax (MHz) 03.48 02.48
Total Thermal Power Dissipation [61.87 60.34
(mw)

Total logic elements 682 625

Despite the register providing a lower power dissipation and reducing the area of this block, the

maximum clock frequency was prioritized to get closer to the target frequency. Therefore, a counter

was used clearing up unnecessary inputs into the ‘valuecheck’ block and unnecessary code in

its verilog.

Final evaluation

Properties Initial Values Final Values
Max clock frequency (MHz) 19.78 93.11

Total thermal power dissipation [37.4 57.84

(mw)

Dynamic thermal power 138.14 16.66
dissipation (mW)

Static thermal power dissipation [99.26 12.94

(mw)

Total number of logic elements 1085 618

Total block memory bits 3,145,728 1184
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Optimizing the Non-general CPU

Optimizing the non-general circuit can come in the form of lower power consumption or higher clock
speed. The initial power analyser summary showed that total power consumption was low, relative to
that of the general circuit, at around 105 milli watts, most of which was a result of the RAM’s used in

the design meaning that little change could come from power oriented optimizations.

The main design improvements would likely be in the clock speed. A lot of the slack came from either
connection to the stack pointer or to the task specific counters. Form here the first plan was to replace
all task counters with a single task counter. However, that resulted in tasks 2 and 3 not operating
correctly. An attempt was made to alter the instruction format for the Fibonacci instruction by
replacing the address part of the instruction word with the direct value of n; This resulted in a

significant decrease in the max clock speed to around 75MHz.

In the end, no significant improvements were made to the non-general CPU. Task counter port widths
were reduced, and some test outputs were removed resulting in the final maximum clock speed of

91.96 MHz and a power dissipation of 106.34 as seen in Figure 52.

Figure 52 — results from final timing and power analysis
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Final CPU Comparison

General Non-General

Initial Final Initial Final
Fmax (MHz) 52.71 64.7 91.94 91.96
Largest slack -8.970 -5.456 -0.877 -6.874
Total power dissipation (mW) 297.43 97.5 68.67 106.34
Dynamic power dissipation 197.56 54.38 25.66 63.28
(mw)
Static power dissipation (mW)  99.87 43.12 43.01 43.06
Total logic elements 1737 1282 895 878
Total registers 153 376 170 168
Total block memory bits 3,325,953 181,408 66,808 66,308

The general CPU has shown a significant improvement in every aspect but most of the non-general

CPU’s properties have worsened. Despite the higher power total power dissipation, the non-general

CPU still has the better clock frequency, logic element and register count. This increased total power

dissipation comes from the higher dynamic power dissipation meaning the non-general CPU has

more frequent changes in the signals.

For practical use, the non-general CPU would be more effective due to its significantly better

maximum clock frequency potential and its much lower area. The difference in power dissipation is

negligible given its advantages.

Project Planning and Management

Early on during the project each of the group members were assigned Belbin roles based on a survey

that was filled out.

Figure 53 — Team members’ top predicted Belbin

Name Top Two Roles
Matilde Implementer Shaper
Nelson Completer Finisher Implementer
Bernard Co-ordinator Plant
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The predicted Belbin roles (Figure 53) were quite representative of how the team worked together.
Bernard was the social leader whilst Matilde made sure that all the deliverables were ready on time
and Nelson was continuously working to polish the final product. Frequent and clear communication
between members was key and resulted in an organised work flow where each member was aware of
what the others were working on at any given point which made it simple to implement design files
made by different members.

The meeting frequency was initially weekly, after the first 2 weeks of the project this was increased to
every Thursday, Saturday, and Tuesday to accommodate for the increased workflow.

Figure 54 — Initial Gantt chart

8 8 8§ 8 8 8 8§ 8 8 8§ 8
=] =] =) =) S =] =) ] g & =]
o ry & o I &5 = I & “§ o
— — - ™ ™ ™~ m = i=1 -
Individual research on architecture and possible implementations of .. e —
Finding belbin roles m
Everyone creates different fibonacc block versions |
Comparing fibonacc blocks and selecting the fastest -
Everyone creates different LCGs I
Comparing LCGs and selecting the fastest ||
Everyone creates different linked lists ]
Comparing linked lists implemenations and selecting the fastest ]
Implementing a general architecture _—
Draft report writeup _—
Optimisation ]
Proper report writeup —
Video prep and creation -

Figure 54 depicts the originally planned series of events/milestones whilst Figure 55 show how the
workflow turned out to be.

Figure 55 — Final Gantt chart
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Individual research on architecture and possible implementations of.. s————
Finding belbin roles -
Fritz - Implement a fibonacci block —
Melson - Implement a fibonacci block —
Matilde - Implement the LCG —
Mekon - Adjust fibonacd block to directly match the spec ——
Matilde - Implement the linked list traversal block -
Fritz - Implement his fib block into a non-general CPU -
Matilde - Create a general CPU with regular instructions —
Fritz - Implement task 2 and 3 into the non-general CPLU ———
Fritz - Fix fib block
Matilde - Implement indirect addressing forthe linked list -
Melson & Fritz - Switch from Cyclone V to Cydone IV -
Implement Nelson's fib function into the general CPU —
Nekon - Take initial analysis of both CPUs -
Everyone - Write general writeups of each section they worked on ——
Everyone - Compile a draft report to submit -
Everyone- Optimise circuits —
Ewveryone- Develop report —
Mekon - Take final analysis of both CPUs -
Everyone - Write up missing sections such as belbin roles etc. —
Everyone - Compiling the final report -
Everyone - Planning the video report contents -
Melson - Editing the video -
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Final Conclusions

The final deliverables were two complete working CPUs, one designed to have a larger range of
operations and flexibility; The other an optimisation based on the first which achieves a similar power
consumption but at a higher maximum clock speed, sacrificing flexibility for performance. The more
general CPU gives the opportunity to easily implement new and more complex tasks in the future

whilst the optimised will be credited for its superior performance (relatively speaking).

If given more time, additional tasks would have been implemented into the general CPU. These could
include traversing the linked list and instead of searching for a value, a logic block could be
implemented to add a node in a sorted linked list. This would be done by finding the first value (B)
bigger/smaller than a given value (N). Then storing N with a pointer to the address of B (STR N
setting first 12 bits to address at which the search has ended). Subsequently, change the value of
pointers of previous elements to their new correct values (this could be done by storing intermediate

values in a register whilst the list is being altered).

The initial plan for the project ended was followed through to a satisfactory standard. This largely due
to successful communication between members and proper organisation as well as continued

documentation from the beginning.
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Appendix

Screenshots of complete non-general CPU:
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Program Counter and Accumulator
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Blocks for Random Number Instruction
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Verilog Code from the Non-general IR

LI L™ L[ LI —

General IR

I e L — — — —
module IR_1_n_2_n_3_W2

B (

)i

input [15:0] instruction,

input PC_not_ready,

output fib_needed,
output Tcg_needed,
output 11s_needed,
output str_needed

wire [4:0] opP;

assign OP = instruction[l5:

assign fib_needed = (OP ==
assign lcg_needed = (OP ==
assign 11s_needed = (0P ==

assign str_needed

endmodule

Fibonacci Task IR

117;

1) & !'pPC_not_ready;
2) & 'PC_not_ready;
3} & !'pPC_not_ready;

(OP > 7) & !'PC_not_ready;

module IR_Final

Bl C

input [15:0] instruction,
input [15:0] data,
input [1:0] count,

output [10:0] data_address,
output [15:0] n,

output count_enable,

output mux_select,|

b H

wire oprl;

wire c0;

wire ci;

assign oP1 = !'instruction[15] & !instruction[l14] & !instruction[13] & !instruction[l12] & instruction[11];
assign €0 = 'count[1] & !'count[O];

assign €l = !'count[1] & count[0];

assign count_enable = (OP1 & «CO0) | (C1);

assign mux_select = C1;
assign n[15:0] = data[l15:0];
assign data_address[10:0] = instruction[10:0];

endmodule
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Fibonacci Task — block to check if n <2 at when the task counter is not equal to zero

- —_—— —_—— L T - - —

module one_sure

=20
input [15:0] data,
input count_in,

output really_sure

assign really_sure = (data < 2) & count_in;

endmodule

Fibonacci Task — block used to output correct signals to the task output register when n <2

P —

podule Tib_0_n_1
3

input needed,
input complete_one_plus_one,
input select_one_plus_one,

output [15:0] v_one,
output select_one,
output complete_one

J:

assign y_one = 15" b0000000000000001;

assign select_one = needed & !select_one_plus_one;
assign complete_one = needed & !'complete_one_plus_one;

endmodule
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Main Fibonacci Operating Block — 1/5

- - L _—— == L1 b |

module Fibonacci_wv4

2(

S/ dnput fib_ready,
input [4:0] op_in,
input [15:0] n_in,
input [15:0] w_in,

input [15:0] y_in_carry,
input down_in,

input delay_in,
J/input complete_in,

output [4:0] op_out,
output [15:0] y_out,
output [15:0] n_out,

output [15:0] y_out_carry,
output complete,

output stack_write,

output up,

J/output delay_start,
output down_2,

output delay_out
J;

wire OPO;

wire ofl;// fib(N) from instruction register
wire orP2;// fib(n-1) from instruction register
wire orP3;// fib(n-2) from instruction register

wire op4;// fib({n-1) from a recursion
wire oP5;// fib{n-2) from a recursion

assign OP0O = (op_in[4:0] == 5
assign OP1 = (op_in[4:0] == 5
assign orP2 = (op_in[4:0] == 5
assign OP3 = (op_in[4:0] == 5
assign OP4 = (op_in[4:0] == 5
assign OP5 = (op_in[4:0] == 5

req COMPLETE;
reg D1;

reg D2;

reg UP;

reg WRITE;
reg DO;

// reg DOP;

reg [15:0] v_ouUT;
reg [15:0] CARRY_OUT;
reg [15:0] N_OUT;
reg [4:0] OP_ouUT;

' bO0000);
'h00001);
'h00010);
'h0O0011Y;
'b00100);
'b00101);
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Main Fibonacci Operating Block — 2/5

e - L) = = L1 L% rl L | FAYEE]
58 J4 start main Tunction
59 alwaysal*)
60 Hbegin
6l
62 COMPLETE = 0O;
63 Dl = O:
64 D2 = 0;
65 Up = 0O;
66 WRITE = 0O
67 JIY_ouT = 0;
68 J/N_DUT = 0;
69 J/OP_ouT = 0
70 Do = 0;
71 //DoP = 0
72
73 if (!delay_in)
74 /4 start not delay
75 Hbegin
76
fr Do = 1;
78
79 S/ start not down in
80 it (!'down_in)
Bl Hbegin
82 J4ooPl
83 if (oPl)
84 = begin
85 | if (n_in < 16" b0O000000000000010)
B6 © begin
87 ¥Y_OUT = 16 "h0000000000000001;
88 COMFPLETE = 1;
1] OP_OUT = 0;
a0 - end
91 glse
92 = begin
a3 ¥Y_OUT = 16" hOo00o00o00o00;
a4 N_OUT = n_in - 16 "b0000000000000001;
a5 OP_OUT = 5 h00010: //OP-=0P2
96 up = 1;
o7 WRITE = 1;
a8 CARRY_OQUT = 0O
99 - end
100 - end
101 S/ op2
102 else if (oP2)
103 @©= begin
104 | if (n_in < 16" b0000000000000010)
105 @© begin
106 Y_OUT = 16" hO000000000000001
107 N_OUT = n_in - 16" bh0000000000000001;
108 OP_OUT = 5'h00011; //OP-=0P3
109 up = 1;
110 WRITE = 1;
111 - end
112 glse
113 [ begin
114 Y_OUT = 16" hO000000000000000;
115 N_OUT = n_in - 16" bh0000000000000001;
116 OP_OUT = 5 h00100; //OP-=0P4
117 up = 1;
118 WRITE = 1;
119 - end
120 - end
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Main Fibonacci Operating Block — 3/5

C—y———

121 // oP3

122 else if (OP3)

123 H©H begin

124 | if (n_in < 16" b000O0000000000010)

125 H begin

126 Y_OUT = y_in + 16" h0000000000000001;
127 COMPLETE = 1;

128 OP_0OUT = 0;

129 - end

130 else

131 H© begin

132 Y_OUT = 0;

133 N_OUT = n_in - 16 " b0000000000000001;
134 OP_OUT = 5'b0O0100; //OP->0P4

135 Up = 1:

136 WRITE = 1;

137 - end

138 - end

139 S/ OP4

140 else if (oP4)

141 H begin

142 | if (n_in < 16" b000000C00C000010)

143 @ begin

144 Y_OUT = y_in + 16" bh0000000000000001;
145 N_OUT = n_in - 16" b0000000000000001;
146 OP_OUT = 5 h00101: //OP->0P5

147 up = 1;

148 WRITE = 1;

149 CARRY_OUT = 16" b0O0000O00000000001;
150 - end

151 else

152 ©H begin

153 Y_OUT = y_in;

154 N_OUT = n_in - 16" b0000000000000001;
155 OP_OUT = 5'h0O0100; //OP->0P4

156 up = 1;

157 WRITE = 1;

158 - end

159 - end

160 // OP5S

161 else if (OP5)

162 E begin

163 | if (n_in < 16" b000000C000000010)

164 [H begin

165 CARRY_OUT = y_in + 16 b000000000000000L;
166 D2 = 1;

167 - end

168 else

169 [H begin

170 Y_OUT = O

171 N_OUT = n_in - 16" b00000oo0ooo0oo0ol;
172 OP_QUT = 5'b00100; //oP-=0P4

173 up = 1;

174 WRITE = 1;

175 - end

176 - end

177 - end

178 // end not down 1in
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Main Fibonacci Operating Block — 4/5

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

else if(down_in)
S/ start down in
Hbegin
S aP2
if (oP2)
= begin
Y_OUT = y_in_carry;
N_OUT n_in - 16 bO0O0OO0OO0O00000001;
OP_OUT = 5'h0O00O11; //OP->0F3
up = 1;
WRITE = 1;
CARRY_QUT = 0O;
- end
S5 OP3
else it (oP3)
= begin
Y_OUT = yv_in + y_in_carry;
COMPLETE = 1;
OF_OQUT = 0O
= end
/) opd
else if (oP4)
= begin

= y_in + y_in_carry;
N_OUT = n_in - 16" b0000000000000001;

OP_OUT = 5'b00101; //OP->OP5

WRITE = 1;
CARRY_OUT = y_in_carry;
o end
J/ OPS
else if (oP5)
= begin
CARRY_OUT = y_in + y_in_carry;
D2 = 1;
- end
- end
J4 end down in
- end
'/ end not delay

else if (delay_in)
S/ start delay
Hbegin
J/ CARRY_OUT = y_in_carry;
Do = 0;

y_in;
n_in;
op_in;

'/ end delay

- end
“/ end function
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Main Fibonacci Operating Block — 5/5

T

241
242
243
244
245
246
247
248
249
250
251
252

assign op_out = OP_OUT;

assign y_out = Y_OUT;

assign n_out = N_OUT,;

assign y_out_carry = CARRY_OUT;
assign complete = COMPLETE;
assign stack_write = WRITE;
assign up = UR;

/fassign delay_start = 0;
assign down_2 = D2;

assign delay_out = DO;

endmodul e

Fibonacci Task — output block

1 podule ACC_PenuTtimate

2

3 B(

4 input [15:0] w_in,

5 input complete,

6 input complete_one,

i

B output [15:0] answer,

g output reset_address,
10 output [36:0] data_zero
11 );

12 L

13 reg [15:0] ouUT;

14

15 always @(*)

16 Hhbegin

17

18 if (complete || complete_one)
19 Hbegin

20 OuUT = y_1in;

21

22 - end

23 else

24  Hbegin

25 QuUT = 0O,

26 end

27 -

28 end

29 -

30 assign answer = OUT;

3 assign reset_address = complete | complete_one;
32 assign data_zero = 37 ' b0000C0O000C00000000000000000000000000000;
33

34 endmodule
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Task 2 multiplication
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l

assign x_ten = 0
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HpLT [15:”4 pe_out,
output stp_loop

aszwn stp_loop = !(Ipc_sut[15]&1pc_out[14]&pc_out[13)&pc_out[12]&1pc_out[11]&!pc_out [10]&!pc_out[9]&!pc_out[R]&1pc_out[7]
endmodu 1e

Enable LIS

: THr e g == == {Ad L1 | [J ¥ & W 208 =

1 module enable_search

2 B(

3 input start, nullpointer, value_found,

4 output dff_en

58 1);

6

7 assign dff_en = start|(!nullpointer&!value_found);
8 endmodule

Next instruction

moduTe next_instruction
(

input donel, done2, done3, value_not_found, start2, start3,
input [3:0]op,

input [1:0]state,

output next_instr,

output ldr

wire exec, fetch_data, str, mov 1di, lcg, 1is, fib;
assign exec = (state == 2' h10
assign fetch_data = (state[1: 0] = 2'b01);

(op[3:2] == 2'b00);
(0p[3 2] == 2'b01);|
== 2'b1100);
(0p[3 2] == 2'bh10);

(op == 4'b1101);
(op == 4'b1111);
(op == 4'b1110);

assign ldr
assign str
assign mov
assign 1di

assign lcg
assign 1lis
assign fib

assign next_instr = (done2&lcg&!start2&exec)|((done3|value_not_found)&lis&!start3&exec)
| (exec&ldr) | (fetch_data&(1di|str|mov)) | (donel&fib);
endmodule
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State machine

'%' Tmodule statemaching
3 [imout p2rojoestate out
3 [int o] hrevious tate,
5 |input dose,
6 |input [3:0jopcode,
7 [output reg [1:0) cyrrent state,
8 [outhut Tcg, start_fetch, Startl, startd, ct_en state, clear state ant, startl
H
1 wire fevch data, ferchinstr, strart, exec;
z assign leg = (opcode == 4°b1101);
assign fetch_instr = ((previous_state \)&((‘;[ state_out 3'b001) | (pe_state_out 3" IJ\II’J))JIdurm
a.s!'!nn ferchodata = (lorevious Suate 1D(pc_state_ou 13] SGereviostace LaCGpe statequt — 3°b100) | ((peatate ot == 3'B10LAICON):
o e = T revtons sace o TTR0TIBCClPE PURCE o AR SRt 13 H e gt ey e i)
assion start_fetch = C(previous_state — 2'b00)éfetch_data);
assign STart - ((previous_state == 2 bol)Bexec);
assion startl = exech(gpcode == 4'b1110);
assign start? - startalcg;
assign startd = start&{opode == 4'b1111);
/756t current state: 00 op fetch instr, 01 op fetch data, 10 op exec
always @ (current_state or 2'b00 or 2'DO1 or 2'b10)
& begin
if (exec)
o current_state = 2'b10;
2
i
4
3 [end
7 srin orcen state - ((cyrrenc_state — 2°b00)| Ccurrenc._state — 2'b0L));
8 assion clear_state ot =
0 endnadule
1
1 wodule decoder
2
3 input [3:0] op
4 input 15 0]1n5tr
5 |input
6 |input 1 n state,
7 input [2:0]pc_out_state, //? 0o0fetch_data, 01 exec
8 |output acc_en, count_en_instr, ir_en, wr_en_reg, wr_en_ram
9 H
10 . .
11 wire lcg, lis, mov, ldr, str, fib;
12
13 assign ldr = 2'b00);
14 assign str = 2'b01);
15  assign mov = 4'b1100);
16 assign 1di = 2'b10);
17  assign fib = 4'p1110);
18  assign lcg = 4'b1101);
19  assign lis = Cinstr[15: 12 = 4'b1111);
20
21 wire fetch_instr, fetch_data, exec;
2
23 assign fetch_instr = (state[1:0] 2'boo)y
24 assign fetch_data = (state[i:0 "b01);
25 assign exec = (state[1:0] = 2°b10);
26
27  assign acc_en = (1cg&dune)|(]15&dnne)\(]d1&duﬂe)l[f1b&dune) //1(1dakexec);
28 assign :nunt_en instr = done; //prnv1uus version: didn't work for first instr 0000 :fetch_instr&(pc_out_state == 3'b001);
29 assign ir_en = fetch data&(pc_t 3'b011); /ffwrst cycTE of fetch data
30 assign wr_en_regq (nxec&(]dr))l[fetch data&(mnv)) //timing corresponding to done for ldr, 1di and mov
31 assign wr_en_ram = (fetch_data&(str));
12
33 endmodule

Accumulator input logic 5

1 moduTe data_in_RAM

NoUhWNHOO®ENOVAWN

Sans

Rei-3vp 3

a(
input [11:0] addr_prev,
input [3:0]opcode,
input [15:0] IR,
input start fetch
input [1 3_3 Reg_b, Reg_c,
input [1 _pmnter,
//input [1 l)] st
output [27 J)]dath ram,
output reg [11:0] a
output [11: n]addr‘z adernext.
gutput fetch2_1cg
wire ’Ic? Tis, 1dr. str, fib
assign lcg = ( de[3: o] == 4 b1101
assign lis = (Dpcode[j 0] == 4'b1111
assign Tdr (oncude[]:z] Z'tm(l);

assign str = (opcode[3:2] == 2'b01);
assign fib = (opcode[3: 0] = 4 blll())

//assign fetch_data = (state == 2'bl

//str write ram

assign data_-m ram = {12'b000000000000, Reg_a};

//1cg: Reg_a = A (1), Reg_b= B(2), Reg_c = S(1_next) and 1is: Reg_a = starting addr(1), Reg_b = value to be found(2)

//assign addrl = (start&(lcgl|1is)? Reg_a[11:0] : 12'b000000000000); if else lis and not start fetch: addr from pointer
always @ (addrl or Reg_a[11:0] or addr_pointer or addr_prev or IR[13:2] or IR[11:0])
g b

//\f (ldalsta)
// addrl = IR[11:0];
//else begin
if (start fetch&(lcgl'hs))
add e

rl =
else if (hs&%fgtart fetch))
addrl = addr_pointer[11:
e1se 1f (strl’ldr)//start fetch ?
IR[13:2];
eise |f (f\b&start fetch)
addrl = IR[11:
else
addrl = addr_prev;
//end

en
//1da and sta implement addr from 12 least significant bits IR and write from acc and taskl implement
assign addr2 = ((1cgl1is)? Reg_b[11:0] : 12'b000000000000);

assign addrl_next = (lcg ? Reg_c[11: ﬂ] : 12'b000000000000) ;

assign fetch2_1cg = (lcgdstart_fetch ? 1'b1 : 1'b0);
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Data in ram

wodiTe acc_in_Togic
¢

acc_out_prev, taskZ_result, data_out_ram, reg_b, taskl_result,
instr_out,
] task3_result,
H IR,
1 acc_in,
output [15:0] reg data in

ok
10 //task?, task3, 1di
or {4'b0000, task3_result} or taskZ_result or acc_out_prev or taskl_result)

1)//task 2
; task3_result};
iy 7/task?

se
22 acc_in = acc_out_prev;
23 |end

25 /mov and lda
26  always @ (reg_data in or data_out_ram or reg_b or 16'bO0000D
27 B begin

28 if (IR[3:0]== 4'b1100)
29 reg_data_i

30 else 1f (IR[3
S req_data_in

)00)

— 2 //1dr
data_out_ram;

else
33 reg_data_in = 16'boC
34 |end

35
36 endmodule

Nelson’s main Fibonacci block code

Valuecheck if conditions

If condition ‘1’

/1
//when we get to a value of n == 1 where a 1 is returned and must add to the return address
if (n <= 1 & ((Actualpv != 0 & EXEC1) | (Previousvalue != 0 & (EXEC2 | EXEC3))))

begin

if (EXEC1 == 1)

begin
newdata = 1;
//newraddress = 0;
J/newn = 1;
newAddress = raddress;
RAMwren = 0;

end

else if (EXECZ == 1)

begin

RAMwren = 0;

en
else if (EXEC3 == 1)

begin
RAMwren = 1;
end
MUX3 = O;
MUX4 = EXECZ2 | EXEC3;
sclr = 0;
sprload = 1;
EXTRA = 1;
Fvload = 0;
end
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If condition 2’

/2
J/when we are at the start of the stack register
//stops any operations occuring without data first being input
E15g if (rRaMout == 0 & Previousvalue == 0 & initialpulse == 0)
egin
gif (EXECL == 1)
begin
newdata = 0;
newraddress = 0;
newn = 0;

newaddress = 0;
end

MUX3
MUX4

| oo

sclr =
Sk1oad

0;
RAMwren = 0;
EXTRA = 0;

Fvload = 0;
end

If condition ‘3’

]

S/when initialising the first couple of values starting from n

//no confliciton errors when doing the addition since this block gets skipped

else if ((n = 1) & data == 0 & (initialpulse == 0))
begin
if (EXECL == 1)
begin
ﬂEgAddFESS = RAMaddress + {4'b0,1"'b1};
en

else if (EXEC2 == 1)
begin
newdata = data;

if (Previousaddress == 0)
begin
newraddress = 0;
end

else if (PreviousAddress != 0)
begin
negraddress = PreviousaAddress;
en

newn = (n - {15'b0, 1'b1});

dHEWAddFESS = RAMaddress; //so that the address 1is unchanged
en

SRload = 1;

RAMwren = EXEC2;

MUX3 = 0

MUxd = 0;

sclr = 03

EXTRA = 0;

Fvload = 0;
end
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If condition ‘4’

/74
//when we have already done fib(n-1) and are now doing fib(n-2)
//previous address would be the address just below this
E15¢ if ((n > 1) & data '= 0 & (previousn = n - 1) ) //last aAND condition used to differ from next if
egin

if (EXECL == 1)

begin

newdata = 0;

if (raddress = 0 & (n = initialn))

begin
newraddress = 0;
end
else
begin
dnewraddress = (raddress + {4'b0, 1'b1}):
en

newn = (n - {14'b0, 1"b1, 1'b0});
newaddress = (RaMaddress + {4°h0, 1 b1l});
en
else if (EXEC2 == 1)
begin
newAddress = RAMaddress;
end
RAMwren = EXEC2;

MUX3
MUX4

sclr
SR1oa

03
03
03

=N

1
EXTRA = 0;

Fvload = 0;
end

If condition ‘5’

/5
//when we have already done fib(n-2) and now need to add to the return address
J/for values at an address below the return address
e15§ it ((n > 1) & data != 0 & (previousn == n - 2) & !(n = initialn))
egin
1fg(EXEc1 = 1)
begin
newAddress = raddress;
newdata = data;
end

RAMwWren = EXEC3;

MUX3 = 0;
MUX4 = EXECZ | EXEC3:
sclr = 0
sRload = 1;
EXTRA = 1;
Fvload = 0;
end
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If condition ‘6’

when we've completed everything and the final value is stored in 0000

e'lsg if ((n > 1) & data != 0 & (previousn == n - 2) & (RAMaddress == 0) & (n == initialn))
egin

if (EXECL == 1)

begin

newdata = 0;

newraddress = 0;

newn = 0;

newaAddress = 0;
end

RAMWren = 1;

MUX3 = 03

Muxd = 03

sclr = EXECL;

SRload = 1;

EXTRA = (;

Fvload = 1;
end

If condition ‘initialising’

Wy

J/initially loading the first value

eTsE if ({(initialpulse == 1} & initialn !'= 0 & initialn !'= 1)
egin

if (EXECL == 1)

begin

newdata = data;
newraddress = raddress;

newn = n;
newAddress = RAMaddress;

end

else if (EXEC2 == 1)

begin

newdata = data;
newraddress = raddress;
newn = n;

newaddress = RAMaddress;
end

RAMwren = EXECZ;

MUX3 = 1;

MUxd= 0;

sclr = 0;

SRload = 1;

EXTRA = 0;

Fvload = O;
end
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If condition ‘oneorzero’

//oneorzero

else if ((initialn == 1 | initialn = 0 ) & initialpulse == 1 & rRaMaddress == 0 & ActualpPv == 0)
begin
if (EXEC1L == 1)
begin
newdata = 1;
RAMwren = 1;
end
else if (EXEC2 == 1)
begin

newdata = 0;
newraddress = 0;

newn = 0;
RAMwren = 1;
end

sclr = EXEC2;
Srload = 1;
Mux3 = 0;

Fvload = EXECZ;

EXTRA = (;
end
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