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Introduction 

This report covers the results and design process of team “this is fine” ‘s EEE1 end of year project, 

detailing the methodology and planning behind the project as well as the implementation into Quartus 

and the errors encountered leading up to the final complete CPU and its operation/performance. 

 

Outline 

The task is to use Quartus Prime to design a CPU with an ISA that performs the following tasks: 

calculates Fibonacci numbers using recursion, calculates pseudo-random integers with a linear 

congruential generator and traverses a linked list to find an item. It must be designed with features 

‘chosen carefully to achieve the best performance in the greatest number of applications for the 

smallest number of transistors. 

From the specification [2] the following key elements were identified: A stack to keep track of 

intermediate variables of a recursive function, the implementation of multiplication for two sixteen-bit 

integers, and traversing a linked list (stored in RAM) using indirect addressing. 

Additionally, the instruction words had to be encoded to provide an assembly line translation of them. 

No specific requirement on the architecture of the CPU was required, but it was agreed that an 

efficient and fast circuit was needed, but one could still be  easily modifier to compute more general 

instructions, such as loading or storing, and more complex operations than the ones in the 

specification [2].  

   

Design Criteria 

Approaching this task was done with Product Design Specification in mind as the CPU, despite being 

a digital design, emulates a real-world product and will therefore have specifications more akin to 

hardware rather than software. 

Performance. It is essential that after the functional requirements for the CPU have been achieved, a 

lot of optimisation is needed to ensure this functionality is provided with minimal components, minimal 

power consumption and a high clock frequency. 

Size. Whilst there are no restrictions on the physical size of the CPU, it is essential that the number of 

components is as limited as possible, as detailed by the spec which highlights the necessity of 

optimisation. 

Quality and Reliability. The CPU must provide consistent results and should operate correctly for 

corner cases. It is important that after an instruction has been completed, the functionality is retained 

and can perform further operations with consistent outputs.  

Timescale. The project was set mid-May with a deadline of June 14th. Proper planning must be 

implemented to ensure the CPU is functioning early on so that later, more time can be allocated to 

optimising and writing up the final report 
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Testing. A necessity that should be done regularly as it aids in identifying errors throughout the design 

process. It should be done thoroughly to ensures the CPU works for all possible input values. 

Documentation. Proper documentation is important as half of the final grade comes from the report. 

Additionally, it is useful for personal use to better recount how past errors were solved. Keeping note 

of why changes are made help members understand why design aspects, made by others, exist. 

 

Design Process 

The plan for the design process was for individual members to be assigned one of the 3 “tasks” 

(operations required by the specification)  to design a block which would execute it. Once tested, 

these blocks would be compiled into 2 similar but distinct general architectures that would run these 

instructions. One version was aimed to be a more flexible CPU able to run other instructions as well 

as more easily incorporate new instructions which used features introduced by the 3 tasks blocks, e.g. 

the stack or indirect addressing. This general CPU would then be converted into an optimized CPU 

which prioritises performance and removed all functions not related to the 3 required tasks, trading 

flexibility for performance. Though both versions would undergo functional analysis, the non-general 

CPU (performance-oriented version) would be the focus of optimizing after analysis, aiming for a 

higher clock speed and lower power consumption than the general CPU. 

 

Task 1 – Fibonacci Sequence 

The task was to implement the recursive function in Figure 1 which calculates the nth term of the 

Fibonacci sequence using a stack which stores temporary variables created in the process. The stack 

could be implemented with either custom hardware or data memory.   

 

 

Stack memory is “a special region of your computer’s memory that stores temporary variables created 

by each function” [3]. This means whenever a fib() function is called, a location stack is allocated for 

this function, along with a return address, until it is completed. Then, this location in stack is freed and 

“that region of memory becomes available for other stack variables” [3]. Consequently, stack is 

usually referred to as a ‘last in, first out’ [3] data structure. 

Figure 1 – Fibonacci function in C++ 
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Traversing the stack requires a stack pointer, ‘a register holding the address for the stack’ [1]. A stack 

pointer makes it possible to choose where new data is inserted and where data must be freed up after 

a function is completed. 

Early version used the idea of taking an input (n) and decrementing it using verilog logic until a 1 is 

returned. Figure 2 shows a system where an input would determine where the returned value 1 is 

initially stored. 

   

Once the initial returned variable 1 is stored, a recurring addition system where the stack pointer 

decrements would lead to the final returned variable being stored in 0th position in stack. However, it 

became clear that this is not a correct representation of the given Fibonacci function (Figure 1), as 

well as not being the correct use of stack memory, despite it providing the desired results.  

Additionally, despite the system’s simplicity, it would not be usable for other recursive functions that 

could work with the architecture; this design would only be suitable for functions where repeated 

addition of the previous two values occurs. 

Rather than storing just the individual data value for each variable, the input parameter (n) and the 

return address of the function, which this local variable will be returned to, should also be stored [4]. 

Despite forcing an increase in the stack word size, making this change will allow the architecture to 

work properly for other recursive functions with the proper adjustments.  

Using this information as well as reinforcing the necessity of stack’s ‘last in, first out’ principles created 

a more flexible architecture that better suited the specification (Figure 3) 

 

 

Figure 2 – a draft diagram of the stack pointer 
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Note that Figure 3 excludes some registers used to acquire inputs into the valuecheck block. 

Word sizes 

• Stack instruction words (48 bits) 

o Input variable n (bits 47-32) 

o Return address (bits 31-16) 

o Returned variable y (bits 15-0) 

• Inputs 

o Opcode (4 bits) 

o Data (16 bits) 

• Outputs 

o Final returned value (16 bits) 

o Final value pulse (1 bit) 

 

 

 

 

 

Figure 3 – diagram for final version of the stack pointer 
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How it worked 

The decoder block called ‘valuecheck’ (Figure 4) handles the signals around the circuit and operates 

based on different ‘if’ conditions. These conditions are triggered depending on inputs from around the 

circuit; there are eight ‘if’ conditions in total: 1, 2, 3, 4, 5, 6, ‘initializing’, and ‘oneorzero’. 

 

 

 

Initialising the first value 

This architecture is designed so that the operations only begin when the correct opcode is detected 

by the ‘initialstate’ block meaning the input data can vary whenever the instruction is not being called 

without affecting anything. When the opcode is detected, the ‘initialstate’ block outputs a pulse 

indicating that a value is being loaded in subsequently incrementing the counter called ‘InitialCounter’. 

The counter increments again causing another pulse to output from the ‘initialstate’ block. The counter 

increments again but no pulse is sent out at this point, remaining at a value of three until the final 

value has been calculated. 

The two-cycle pulse sent out by the ‘initialstate’ block (called ‘initialpulse’) is input into the 

‘statemachine’ block which starts a two or three cycle system (depending on current conditions) used 

to calculate and write in the next value into the stack. 

 

 

 

 
Figure 4 – valuecheck decoder block 
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This two-cycle pulse is also input to ‘valuecheck’, triggering the ‘initialising’ condition in the 

‘valuecheck’ block, causing the following: 

• Cycle 1 – MUX3 selects the input parameter as the input data into the stack. 

• Cycle 2 – This value is written into the stack’s 0th address 

Before the input variable can be written to stack, it is extended to match the world length of the stack 

using the ‘inputextender’ block which fills the 21 LSBs with 0s. 

 

Working towards the final value 

Once this variable has been input into the 0th position of stack, the ‘valuecheck’ block identifies what 

set of signals to output to the circuit and calculates the new value to store in the RAM. From the initial 

value onward, the resulting actions are dependent on the input. For an input of one or zero, the 

‘valuecheck’ triggers the ‘oneorzero’ condition designed for when the input parameter (n) is one or 

zero and the expected result is one: 

• Cycle 1 – Produces the output data value of 1 and writes this into the stack’s 0th address. 

• Cycle 2 – Storing the previous output’s data value of 1 into the register that stores the final 

calculated value. The stack’s 0th address is then overwritten with a null value so that the stack 

is ready for a new Fibonacci function. 

However, if the input parameter (n) is not one or zero, condition ‘3’ is triggered calling fib(n - 1): 

• Cycle 1 – The stack pointer is incremented since calling a new function means another spot in 

stack is occupied. 

• Cycle 2 – The new output value is generated; this is the previous value with the input variable 

decremented and the return address adjusted to call the previous function. This new value is 

written into the RAM in the same cycle. 

Note that for the following tables, all values are in hexadecimal  

current 

function line 

function calls stack address value of n return 

address 

data value 

fib3 fib3 0000 3 (0000) by 

default 

0000 

  y = fib2 fib2 0001 2 0000 0000 

    y = fib1 fib1 0002 0001 0001 0001 
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Once a point has been reached where the input variable (n) is one ore zero, the condition ‘1’ is met 

where the data value of the return address is incremented once: 

• Cycle 1 – A data value set to 1 is generated. The ‘isolatedata’ block (Figure 3) sets the rest of 

the word excluding this data value to zero. The stack pointer is updated with the return 

address so that this value will be read out in the next cycle. 

• Cycle 2 – The value read out from the return address is added to the output of one, from the 

‘isolatedata’ block, using the ALU. Additionally, MUX4, the multiplexer controlling inputs to 

stack is made to take inputs from the ALU 

• Cycle 3 – This new value is written into the stack to overwrite the return address value.  

MUX7 is needed for these 3-cycle conditions so that the input to the ‘valuecheck’ block does not 

change at the 3rd cycle. Once the 3rd cycle has been reached, the signal EXEC3 is used as a select 

line for MUX7 so that it switches to a delayed value of the stack output. This ensures that 3-cycle 

conditions are fulfilled. 

current 

function line 

function calls stack address value of n return 

address 

data value 

fib3 fib3 0000 3 (0000) by 

default 

 0 

  y = fib2 fib2 0001 2 0000 1 

 

The ‘valuecheck’ block then determines that a fib(n-1) function has just been completed and the fib(n-

2) function has yet to be called. Condition ‘4’ performs the new function call: 

• Cycle 1 – Generating the new value where n has been reduced by 2, the return address has 

been set to the previous address and the data variable is cleared. The stack pointer is 

incremented. 

• Cycle 2 – This new value is written to stack. 

current 

function line 

function calls stack address value of n return 

address 

data value 

fib3 fib3 0000 3 (0000) by 

default 

 0 

  y = fib2 fib2 0001 2 0000 1 

    y = y + fib(0) fib0 0002 0 0001 0 
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Condition ‘1’ is met again in this transition. 

current 

function line 

function calls stack address value of n return 

address 

data value 

fib3 fib3 0000 3 (0000) by 

default 

 0 

  y = fib2 fib2 0001 2 0000 2 

 

The ‘valuecheck’ block also knows if a fib(n-2) function has just been completed, now the data 

variable of the original function must be input to the return address. These instructions come under 

the if condition ‘5’: 

• Cycle 1 – Data value is isolated using the ‘isolatedata’ block. The stack pointer also updates 

with the return address 

• Cycle 2 – The value from the return address is read out and added to the previous data value 

using the ALU. MUX4 is set to direct the ALU output into to the stack. 

• Cycle 3 – The ALU output is written into the stack. 

current 

function line 

function calls stack address value of n return 

address 

data value 

fib3 fib3 0000 3 (0000) by 

default 

2 

 

Since fib(2) was the fib(n - 1) function of fib(3), the condition where fib(n - 2) must be completed is 

triggered again (‘4’). 

current 

function line 

function calls stack address value of n return 

address 

data value 

fib3 fib3 0000 3 (0000) by 

default 

2 

  y = y + fib1 fib1 0001 1 0000 0 

 

current 

function line 

function calls stack address value of n return 

address 

data value 

fib3 fib3 0000 3 (0000) by 

default 

3 
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The final value is stored in the 0th address and the 16 relevant bits are stored in a separate register. 

The ‘valuecheck’ block detects this through the condition ‘6’: 

• Cycle 1 – A signal is sent to the ‘sload’ input of the ‘final value’ register (Figure 3) which 

allows a value to be loaded in. This same signal is output from the block to indicate that the 

final value has been calculated. A null value is also generated to overwrite the 0th address to 

bring the block into a ‘rest’ state. The counter from the beginning is reset to allow for a new 

input instruction. 

• Cycle 2 – This null value is written into the stack. 

The rest state/condition ‘2’ is used when nothing is happening with the fib block thus, there are no 

outputs or changes in the circuit. In both cycles, all signals are set to zero so no values can be written 

in making the circuit ready for a new input. 

 

Evidence of functionality 

 

 

Figure 5 test inputs of n: 0, 5, and 1. Note that once the final value has been calculated, the opcode 

switches; this switch is causes by the rest of the CPU. 

 

 

Figure 5 – test waveform 

 

 

Figure  6 – test waveforms for FVsig 
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All the test results are correct (Figure 6) and when they are calculated the FVsig output pulses 

correctly. 

The current architecture allows flexibility when implementing other recursive functions due to only 

needing to make modifications to the ‘valuecheck’ verilog such as the conditions and the signals sent 

out. However, recursive functions that do not solely use addition will need additional hardware. 

 

Optimising Task 1 – Fibonacci Sequence 

Planning 

The implementation of the Fibonacci task was done in 2 different ways. The method detailed above 

was used in the general CPU whilst the other was optimised to be more task specific and less flexible. 

This version will be the discussed in the following section. 

The process of designing the block, similarly to the other Fibonacci block design process, began with 

research about the stack and how it typically works as this was the main feature this task introduced 

[1].  

In the case of the recursive function from the specification (Figure 1), the stack would need to contain 

the current value of n as well as the current value of y, both of which are sixteen-bit integers.  

 

 

Figure 7.1 – Opcode format  
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Once this was established, the focus was directed to how the stack would look like during operation, 

including the values contained and word size, and how the stack pointer changes during operation. 

The initial conclusion was that the C++ function given (Figure 1) had 3 possible outcomes each time a 

new n was inputted: either n was one or zero in which case the return value is one, n is greater than 

one and the function calls on itself with the new input n being one less 

than the current n, or ‘y = fib(n - 1)’ has been performed and now ‘fib(n 

- 2)’ is being added on. From this came the first alterations to the 

general implementation of stack to make it more optimized to solely 

run this task, the removal of return address’, using instead an opcode 

to indicate which of the three positions the function was currently in 

(Figure 7.1).  Figure 7.2 briefly illustrates how the opcodes would 

interact during runtime.  

The word length of the opcode is five bits so that the first operand 

could come directly from the instruction word, which is separated into 

five bits of opcode and eleven bits which contained the address of the 

starting value of n stored in the data RAM. From this the stack word 

size would have to be thirty-seven bits to accommodate for the two 

sixteen-bit integers (n and y) and the five-bit opcode. This meant it 

would be better to keep the stack separate to the data RAM, which had 

a sixteen-bit word length [2], so that all the variables (OP, n, and y) 

could be fetched in 1 cycle. The stack was implemented using a 1-port 

RAM with 32 words (Figure 8). 

 

 

 

Figure 7.2 – diagram of opcode use  
Figure 8 – Stack  
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After it was clear what the stack would contain during operation, the new focus was how the stack 

pointer would traverse this information. The address contained in the stack pointer could either 

increase or decrease; in the case of it increasing it would only ever increase by 1 when new items 

were added to the stack; This is easily implemented by incrementing the value of the stack pointer. 

The stack pointer would decrease only in a specific case where it completes the following set of 

recursions shown in Figure 9. From this it is inferred that in cases where the stack pointer decreases 

in value, it does so by two. From here all the possible stack pointer operations needed were an 

increase by one or decrease by two, and a reset function all tasks are complete, effectively resetting 

the stack size to zero. At this stage, implementing and testing in Quartus began. 

 

implementation 

 

 

The stack pointer (Figure 10) was implemented using a counter and an adder; The counter would 

increase when the ‘up’ input was high as it was connected to the count enable of the counter. 

Decreasing the address of the counter by 2 was done by connected the ‘down_two’ input to the 

‘sload’ port of the counter and having the input address as always equal to the current address minus 

2. 

 

Figure 9 – Situation needed for stack address 

decrease  
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The first error encountered is seen in Figure 11. The problem was that the function was not returning 

to previous recursions correctly, it would only continue to perform OP2’s (Figure 7.1) until the current 

value of ‘n’ was less than two, at which point it performed an OP3 (Figure 7.1) meaning that any initial 

input of ‘n’ yielded an output y of two. It was clear that there needed to be a way to distinguish when 

an item in the stack had been completed and the stack pointers value had decreased. This was done 

by inserting in a delayed input of the ‘down_two’ signal back into the main operating block, resulting in 

different operations when there was a ‘down_two’ output last clock cycle.  

 

 

 

Figure 11 – Incorrect Waveform for fib( 5 ) 
Output was X here onward 

Figure 12 – Verilog when down_in is high 

 

Figure 10 – Stack Pointer  

 

An 8-bit stack pointer address 

was initially used before the 

stack size was decreased to 

32 bits. 
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Figure 12 is the Verilog code for the situation depicted in Figure 9 after the stack address is 

decreased by two. It also meant that somehow when the items were complete, the y value needed to 

be stored and inserted back into the old instruction the stack pointer is pointing at, which resulted in 

the use of a carry in and carry out mechanism.  

 

  

Figure 13 works by taking the y output that needed to be re-inputted into the main operating block 

(carry_out) and inputting it into a counter which would then update at the next clock cycle. This meant 

that the ‘carry_out’ value would be inputted as the new ‘carry_in’ value one cycle later when the stack 

address is lowered. This value would then be used as seen in Figure 12. 

At this point in time some changes to the original opcode format for the task were made this new 

format is explained in Figure 14. 

 

Opcode name Binary value Significance  

OP1 00001 Used for the initial fib(N) instruction directly from the instruction 

RAM 

OP2 00010 Used for the first iteration of y = fib(n – 1) where n = N 

OP3 00011 Used for the first iteration of y = y + fib(n – 2) where n = N 

OP4 00100 Used for the all other iterations of y = fib(n – 1) where n ≠ N 

OP5 00101 Used for the all other iterations of y = fib(n – 1) where n ≠ N 

 

Once these changes were made a timing issue was spotted. There was a delay between the 

changing of the stack pointer address and when the correct set of data would be outputted. This was 

previously unnoticed since the settings of the RAM used for the stack were such that when the 

address is changed and the stack is being written to, the output of the stack would always be the new 

Figure 13 – carry_out delay block 

 

Figure 14 – New opcode format 
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value that was being written to it meaning there was no delay between when the value was inputted 

and when the stack outputted the value. This however meant that when the address of the stack 

pointer was changed and the stack was not being written to, the stack would take an extra cycle to 

output the correct values.  

This was solved by implementing a general delay which meant that the main operating block would 

only change its outputs every other cycle to ensure it was receiving the correct outputs from stack. 

Figure 15 shows how this delay was implemented. When ‘delay_in’ is high, the main operational block 

does nothing and ‘delay_out’ is set to low; when ‘delay_in’ is low the block would operate normally 

and ‘delay_out’ would be set to high. 

This meant that several input variables as well as write enables also had to be delayed for everything 

to operate at the correct timing. This resulted in a doubling of clock cycles needed to complete a fib(n) 

instruction.  

 

 

Now operation was fine for a single execution of the Fibonacci function. Additions to the circuit were 

made to allow for multiple executions of the function to be made in a row. 

Figure 16 shows an output block for the Fibonacci task which takes inputs from the main operating 

block and had outputs that included: a ‘complete’ output signal that indicates when the main operating 

block finishes executing its current instruction, the ‘final_answer’ to the current instruction, and a 

‘reset’ output so the stack pointer points to address 0. This was implemented using a verilog file. 

 

 

 

Figure 15 – delay flip flop 

 

Figure 16 – Fibonacci output block 
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A problem arose when automating the fetch cycle of the Fibonacci block (this is discussed later in the 

section regarding the optimized complete architecture) for it to take multiple inputs in a row. The error 

was that it would not work for initial values of ‘n’ that were less than two, which did work prior to 

automation. This was solved by introducing a separate operating block for cases where the initial ‘n’ 

was one or zero (Figure 17) which had an enable input, that was high when an ‘n’ coming from the 

data RAM was less than two, and had output: ‘y_one’ (which was always equal to one in sixteen-bit 

binary), ‘select_one’, and ‘complete_one’. As a result, BUSMUX’s had to be connected to the inputs 

of the output block (Figure 16) in order change whether it took ‘answer_in’ from the main operating 

block or the block in Figure 17.  

 

 

After testing another problem was identified which was a consequence of the delay mechanism 

(Figure 15); The block was in effect just a clock with half the cycle speed of the actual clock. 

Consequently, if the main operating block would receive the initial fib(n) instruction, from the 

instruction RAM, when ‘delay_in’ was high, the whole Fibonacci block would not work. This was 

solved simply by extending the time in which the initial inputs of the main operating block come from 

the instructions register (Figure 18).  

 

Figure 17 – Block for fib(n) where n < 2 
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Final operation 

Figures 19 explain the operation of the complete Fibonacci block. 

 

Figure 18 – BUSMUX for op_in of main operating block 

 

Figure 19.1 – main operating block 
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Component Name Reference Figure Number Function 

Opcode BUSMUX 13 Used to change where the main 

operating block gets op_in from 

n BUSMUX 13 Used to change where the main 

operating block gets n_in from 

Main operating block 14.1 & 12 Describes figures 12 and 14.1 combined 

and is used to alter the value of the stack 

pointer. Also outputs the value to be 

written to stack. And controls the output 

block. 

Output block 11 Outputs the final answer and a 

“complete” signal the cycle the fib(n) 

instruction is complete 

Stack Pointer 5 Contains the current address to stack 

Stack 3 Used to store intermediate values during 

operation 

 

 

Figure 19.2 – Simplified diagram of Fibonacci block 

Figure 19.3 – Table of operation for Figure 19.2 
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Final tests were conducted to illustrate that the block worked for single and multiple instructions in a 

row, as shown in Figure 20, and was now ready to be implemented into the complete architecture. 

The main cause of problems throughout the design process of the optimized Fibonacci block came 

from the physical restrictions of hardware components, either in the form of delays of clocked 

components or the difference between the theorised operation and actual operation of certain blocks. 

Overall, no major problems arose due to time spent planning the process and designing on paper 

before implementing anything into Quartus.  

 

 

 

 

 

Task 2 – Random Number Generator 

 

The Multiplication Block 

 

This block computes binary multiplication by performing series of shifts and additions. This method 

can perform multiplication of sixteen-bit integers in a single cycle as it pipelines the adders. The 

resulting circuit  (Figure 21) is composed of two parts. The first a Verilog file performing the shift; One 

of the two multiplicand word is taken as argument (A) and the other (B) is used to decide when to 

perform the shift on the argument. Every time a bit of B is high, a shift left is performed ‘N’ times on a 

copy of ‘A’, ‘N’ being the position of the high bit in ‘B’ (if the ‘Nth’ bit of B is 0, the copy will just be set to 

zero. The second part consists of a pipelined series of adders adding two of the shifted copies of A at 

time. Since the Verilog block and the adders are not clocked, the process is not subject to any delay 

and the result will be ready in the next cycle. Since word length of the integer variables used is 

limited, if the resulting number exceeds sixteen bits, the result will be different from the calculated 

expected. 

 

 

Figure 20 – waveform of working Fibonacci instructions 

 

Instructions used for test were fib(4), fib(1), then fib(3) Ignore RAM state here 



Page 22 of 71 
 

 

 

 

Random number generation logic 

 

 

 

 

At first, the linear congruential generator was designed manually, then implemented on Quartus. The 

circuit was designed to execute the above code (Figure 22) using the multiplication unit and two 

addition units (Figure 23) one implementing ‘y = y*a + b’ and the other ‘sum = sum + y'. A block was 

created to implement these additions and was implemented in the final task 2 circuit. 

 

 

 

 

 

 

Figure 21 – multiplication block 

 

Figure 22 – code  from the specification 

 

Figure 23 – addition unit 
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Complete Task 2 Circuit 

 

The final circuit used a loop connecting the outputs ‘sum' and ‘y' to the corresponding inputs. Two 

multiplexers were placed to choose the starting values of y (input) and sum (zero when initialised) for 

the first cycle of the loop, when a start input for the whole task is high. Another MUX was used for the 

output stage selecting zero unless the complete output of the task is high, in which case the MUX 

outputs the final value of ‘sum’.  

 

An additional block was included in the complete task 2 circuit (Figure 24) that sets the maximum 

number of loops allowed (given by the input ‘N’). The final circuit was made with a Counter and an 

Adder that subtracted ‘N’ from the output of the counter. When the difference between the two values 

is zero, a complete output is produced by a Verilog block, disabling the counter, and enabling the 

output stage of the task. The start output is also used to clear the counter so that is set again to zero 

at the beginning of the next instruction. 

 

After testing the circuit noticed that the main operating block had undefined behaviour. This was 

solved by clocking the inputs to this block using DFFs ensuring that the block would only change 

outputs once a clock cycle. 

 

 

  

 

 

 

 

 

 

Figure 24- complete task 2 circuit 
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Final Testing 

 

The task was compiled into a single symbol and was tested to check the functionality with given 

inputs. The inputs required by the circuit are the values of ‘A’, ‘B’, and ‘S’ (from the Data RAM) and ‘N’ 

(set to 16 according to the specification [2]), the clock input and the start input (later automated using 

a state machine). The outputs produced are the final ‘sum’ value and a ‘complete’ output, that will be 

used increment program counter. Other additional test outputs were made to check intermediate 

values during operation. 

 

After testing the circuit with different inputs, it was confirmed that when the start input high for one 

cycle (excluding the first cycle) instruction starts to be executed and the loop continues (Figures 25). 

This is shown by the changes in the intermediate values and stops when counter reaches the 

maximum value (sixteen cycles). Comparing the final output with the manually calculated answer 

confirmed the circuit is working as expected. Figures 25 are the two most relevant tests results which 

confirm the behaviour previously explained. The task 2 circuit was now ready to be implemented into 

both CPUs since it already optimised. 

 

 

 

 

 

  

 

 

Figure 25.1 – test waveform 

 

Figure 25.1 – test waveform 
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Task 3 – Linked List Search 

 

Selection an Implementation Method 

 

Multiple implementations were initially considered before settling on the following method. The linked 

list was implemented by storing both elements (value and next pointer) of an item into the same 

memory location using a twenty-eight-bit wide data RAM. The 12 MSBs of the word contain the 

address of the next pointer and the 16 LSBs contain the value. This method to be simpler in terms of 

implementation and more effective since it does not require any new piece of hardware.  

 

Indirect Addressing and Registers 

 

A register was needed to store the memory content and the current address while traversing the 

linked list. It was decided that an indirect addressing block would be in the final general CPU which 

allows for different operation on linked list (e.g. inserting a value). It was noticed that the task itself 

does not require indirect addressing since a comparator can be used to know if the search value is 

not found, the 12 most significant bit of the data out can be directly fed into RAM. Consequently, the 

task used a register to control when the address input into the RAM changes, and a comparator that 

produce ‘complete’ output if the value coming out of the RAM is the search value. 

 

  

Control inputs 

 

The output stage consisted of a multiplexer that outputs the current address, if the value at that 

address corresponded to the search number, or a series of zeros otherwise. If the address of the 

found value is zero, it could be misinterpreted if the value were found or not. To solve this a signal 

was made indicating when the task is done so that the CPU can recognise when the task is and the 

found address is zero.  

 

A block was made to identify when the next address is a null pointer, this produces an output 

(value_not_found) that stops the search by disabling changes in the register containing the address 

and enables the CPU to execute the next instruction. The ‘complete’ signal comprised of both the 

‘value_found’ and the ‘value_not_found’ signals. 
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After running initial tests, it was identified that very first cycle of the instruction the complete output 

signals was high. To avoid the block ending the instruction before even beginning to execute, a 

verilog block was implemented that when the enable is high whenever start is high or, both ‘found’ 

outputs are low. The start input is also used to clear the comparators. The final circuit is seen in 

Figure 26. 

 

 

 

  

 

Final Testing  

 

The circuit was compiled into a single symbol file and connected data RAM. The initial inputs needed 

by task block are the starting address and the search value a clock signal and the start value. The 

final outputs are the memory address where the value can be found and the two ‘complete’ signals. 

 

A MIF file was made to test the case in which the value is found (Figure 27), and one that test a list 

that leads to the break condition/null pointer (Figure 28). Additional outputs were added to check the 

entire functionality. The two simulations showed the expected outputs both in terms of the final 

address and the behaviour during operation. 

 

 

 

 

 

 

 

 

 

Figure 26 – complete output 
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The final version of this task takes as many cycles as the number of nodes traversed due to final 

optimisations made prior to implementing in the general circuit. 

 

 

 

Figure 27 – test MIF file “value exists” and corresponding waveform 

 

Figure 28 – test MIF file “value does not exist” and corresponding waveform 
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Optimizing Task 3 – Linked List Search 

To form the optimized block for task 3, alterations were made to the original block so that it would 

operate with a sixteen-bit memory word length. Changes that were made involved changing bus 

widths as well as introducing a block connecting the next pointer address input to the search address 

output, these changes can be seen in Figures 29. 

 

 

 

 

 

Outputs value_A_address and next_B_address are the address inputs for port A and B of the data 

RAM meaning that item value and next pointer can be fetched at the same time. These changes were 

implemented with the assumption that the “value” and “next” pointer of each item in the linked list 

differed by 1 in their memory location and were made to take advantage of the RAM being a 2-port 

RAM instead of the 1-port in Figure 29.1. This was then tested for single and multiple inputs to ensure 

outputs were still correct (Figure 30). 

 

Figure 29.1 – unchanged task 3 

block 

Figure 29.2 – highlight of changes made to Figure 16.1 

Data RAM 

word size was 

28 bits 

 

Block to add 1 

to address of 

next pointer 
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Figure 31 is a complete output signal that was formed by ANDing the ‘found’ OR ‘not_found’ signal 

(which indicate if the search value does/does not exist in the linked list) with NOT ‘start’ (which was 

set to low during operation and high otherwise). An assumption was made with the implementation of 

this task for the non-general CPU, the “Next” pointer value for any item in the linked list could never 

be zero (unless it was a null pointer).  

 

 

 

 

 

 

 

Figure 30 – working waveform for 2 linked list search instructions 

Figure 31 – logic for task 3 “complete” signal 

 

 

Instructions were a linked list 

where the search item existed, 

then one where it did not. 

Task complete and address was found. 
Task complete and item was not found 

(defaults to 0 as the ouput). 



Page 30 of 71 
 

The Complete CPUs 

 

Initial decisions  

The  CPU is characterized by a flexible design that can adapt the task blocks to execute other 

instructions relating to the task as well as additional unrelated instructions such as load and store. 

Both CPUs have the following general characteristics: two separate RAMs (Data and Instruction), the 

use of 16bits word for data path, the use of one only instruction that take multiple cycles to execute a 

specific task, following the CISC model of architecture [5] since found it to be faster in terms of clock 

cycles than executing multiple simple instructions. 

 

The General CPU 

Overview 

This CPU is characterized by a flexible design that can adapt the task blocks to execute other 

instructions relating to the task as well as additional unrelated instructions such as load and store. 

The CPU was first designed on paper, listing all the elements needed to perform the most basic tasks 

(load, store etc.). Then it was built in Quartus (Figure 32) and after testing the functionality of the 

control and data paths, the specific tasks’ blocks were added. Adjustments to the general circuit were 

made to produce the needed inputs. A block was created and to implement the option to fetch the 

inputs for task 2 and 3 by either indirect addressing or by fetching from a register.  

 

 

 

 

Figure 32 – General CPU design file 
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ISA 

Since the tasks performed by the CPU require different information in the instruction word, every 

instruction is divided differently. If the two most significant bits [15:14] are both 1, the opcode will be 

four bits long [15:12] otherwise the opcode is only 2 bits. Depending on the instruction, the rest of the 

word contain either a RAM address or a registers address in which the address/value is stored 

(Figure 33) explains the instruction word structure and provides more details on the functionality of 

each operation. 

 

          

 

Instruction section and control path 

This first section (Figure 34) of the CPU is composed by:  

• Program Counter: incremented by the decoder at the end of each instruction it contains the 

instruction RAM address. 

• Instruction RAM: initialized to have a test program.  

• Instruction Register: updated with the contents of the instruction RAM at the beginning of 

each fetch state. 

• Decoder: enables control lines based on the current state and instruction 

• ‘Next instruction’ Block: defines when a task is complete, and the next instruction can be 

fetched 

• ‘Accumulator input’ Block: that defines which sixteen-bit word is input into one of the four 

registers 

• Accumulator and “indirect addressing” block: four register that can be written to and read from 

(three at time: Ra, Rb, Rc). Register 0 can be used as an accumulator 

 

Figure 33 – ISA for the general CPU 
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Decoder and state machine block 

 

Both are controlled by a counter (PC) (Figure 35) that counts the number of cycles passed, resetting 

at every new instruction:  

• PC 0,1,2 state: “fetch instruction” 

• PC 3, 4, (5 for LCG) state: “fetch data” 

• PC 5 (6 for LCG) state: “execution” 

 

The counter stops during the execution and it is cleared when the instruction is done. After testing, a 

co-dependency between the state machine- decoder block and the next instruction logic was 

identified. Since they are both combinational logics, if one changes, the other does, resulting in a loop 

causing an error in the waveform. A multi-bit wide DFF was added (Figure 34) giving a one cycle 

delay between the changes of the two blocks, avoiding loop. For the same reason, a DFF was 

inserted between the output of the current state of the state machine and the inputs of the previous 

stat (Figure 35).  

 

 

Figure 34  

 

Figure 35 
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State machine 

 

There are three possible states:  

• “Fetch instruction”: the program counter increases by one, the new instruction is fetched from 

the RAM during cycle 1 and 2 of the state machine counter (considered two cycles for the ram 

to output the new value since the first implementation involved a register at its output stage). 

• “Fetch data”: cycles 3 and 4, the address of the data RAM is updated, and it outputs the 

variables needed for the task to execute. since two values are fetched at time and LCG needs 

three input values, this state will extend until cycle 5. At cycle 3 the IR is updated. 

• “Execution” of the current task: this state continues until the “next instruction” input is high.  

 

The state machine takes as inputs the output of the state machine counter, the previous state, the 

current state, and the output of the next instruction block delayed by one cycle. The outputs include 

the current state which is equal to 10 during the execution state, 01 if in fetch data, and 00 in any 

other case; Along with all the start inputs for fetching data and enabling execution of a specific task. 

The “start fetch” output is high at the first cycle of fetch data. The start2 (LCG) and start3 (LIS) outputs 

are high the first cycle of execution state and since FIB (task1) works slightly differently than the other 

two, the start1 output is high during all execution cycles. 

 

Pipelining these states would only be partially possible since:  

• It cannot be forecast when certain instructions will end their execution given their variable 

execution times. 

• Fetching data cannot be done until the instruction is fetch (the addresses are not known in 

advance since there are contained in the instruction word) 

• The execution cannot happen before fetching the data input 

 

In the implementation given the only pipelined stages taking places are the execution of LDI, STR, 

MOV and LDR during the fetching state of the next instruction since these operations require only one 

execution cycle (LDR takes two and has one cycle pipelined) and involve only the content of the data 

RAM and the registers. Further optimizations have been done to the non-general of the CPU, more 

relevant than this one in terms of performance. 
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Decoder 

 

Here most of the control inputs are defined based on the state, the current cycle number, the opcode 

coming from the instruction register and the “next instruction” input. The Verilog code implements the 

following logic: 

• The accumulator is enabled whenever one of the tasks requires to store a result in it (FIB, LCG, 

LIS, LDI) and is loaded in the instruction register and the “done” output is high. 

• The program counter fetching the next instruction address is enabled whenever the “next 

instruction” output is high. 

• The instruction register changes its content whenever the fetch_data state starts. 

• The write enable for the registers of the indirect addressing block is set to 1 whenever one of 

the instructions that requires to write in a register (LDR, MOV) is complete (Figure 36). 

• The write enable of the ram is high during an STR instruction when it has been completed 

(Figure 36).  

 

 

Next Instruction Block 

 

This block outputs when an instruction is completed. Since there are different timings/execution length 

for each instruction, each task block has a “done output” that is high when the instruction is complete. 

Both the program counter and accumulator enable depend on this. Depending on the current 

instruction, the ‘next_instr’ output (Figure 36) follows different logic: 

• STR, MOV and LDI  do not need execution cycles since their execution happens between the 

‘fetch_data’ state and the ‘fetch_instruction’ of the next instruction (pipelined); Since the 

‘done’ output is delayed by one cycle “next instruction” output will be high already in first cycle 

of ‘fetch data’.  

• For LDR an execution cycle is needed (using the ram requires an addition cycle). 

consequently, the output will be set high at the first cycle of execution. 

• For the specific tasks, they have been implemented so that there is one done output for LCG 

and for FIB, while for LIS there are two. Therefore, the ‘next instruction’ output will be high 

whenever one of those instruction are completed. 

 

 

  

 

 

 

 

 

Figure 36 – next_instr code 
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While running tests, an additional condition was  added as an assertion after incurring in errors; 

Sometimes the task would produce a done output while fetching the input at the start and would not 

execute. Consequently, stated that any done output can be high only when start input is low. Having 

the state machine be reset by the complete output of the current task makes the control path very 

flexible in implementing additional instructions with undefined number of cycles. 

 

Testing the Control Path  

 

Some tests were done at this point of the implementation to check the functionality of the control path, 

focusing on the state machine timing. As can be observed in Figure 37 the state machine and 

decoder outputs behave as expected. In Figure 38 it can be noted how the entire control path works. 

 

 

 

  

 

 

 

 

Data section  

This section is composed of the data RAM, the logic block defining which data to be input in the RAM 

(current address and value to be written), the accumulator, and the indirect addressing block with the 

logic block defining the data that’s loaded into the registers. 

 

Figure 37 – state machine and decoder test waveform 

 

 

Figure 38 – control path test waveform 
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Indirect Addressing and the Accumulator Block 

 

This block (Figure 39) consists of four registers (r0, i.e. the accumulator, r1, r2, and r3) and can 

perform different and more complex operations from the ones required by the specification [2] thanks 

to the two modes of operation it uses: 

• R0 can be used as an accumulator, enabled by the input defined in the decoder and loaded 

with the data defined by the logic block “accumulator input”. Using an LDI instruction, the 

accumulator can be loaded directly with a value provided in the instruction word’s 14 least  

significant bits. 

• All four registers can be loaded either with a value coming from the data RAM output (LDR) or a 

value contained in another one of the registers (MOV). The lpm_decoder defines which of the 

four registers is written by enabling only one of them using a two bit select line (the two least 

significant bits of the instruction word) and loading the data from the “data_in” port. 

Simultaneously to the write operation, three register can be read from. Those register are 

selected by three multiplexers with control inputs respectively bits 0 and 1 (Ra), 2 and 3 (Rb), 4 

and 5 (Rc) of the instruction word. The data outputs do not need to all come from different 

registers, but one will always be the same as the one written (Ra). 

 

 

 

 

 

 

 

 

 

Figure 39 – indirect addressing and accumulator block 

 



Page 37 of 71 
 

Accumulator Input Logic Block 

 

This Verilog file defines which data word should load in the accumulator/one of the registers: 

• Accumulator: depending on the current instruction (LCG, FIB, LIS or LDI) the “data_in” input will 

be set to the result of task1, 2, 3 or the least 14 significant bits of the LDI instruction word 

• Register: depending on the current instruction the “data_in” input will be the output of the RAM 

(STR) or the content of the source register (MOV) and will be written into the register 

corresponding to the two least significant bit of the instruction word (Ra) 

 

 

Additional Observations on the Timing of the Load Operation  

 

Since for STR and MOV the execution of the instruction happens during fetch states to reduce the 

number of cycles of those instruction, thus, the execution state never occurs, the written register will 

be loaded before the instruction register actually changes. Therefore, a need to use the output of the 

instruction RAM, instead of the output of the IR, for all the control input of those two instructions was 

necessary. At the same time, after testing LDR, it was evident that this is the only instruction that 

writes to registers after the execution, when the instruction RAM output cannot be taken as it is 

already changing to fetch the next instruction, but the IR keeps LDR. Consequently, a bus mux has 

been added before the indirect addressing block input port to choose the register based on the 

instruction word coming from the RAM or the IR, depending the last instruction fetched.  

 

Data RAM and Input Data Logic  

 

Since there were no restrictions on the width of the data word in the memory [2], it was set at twenty-

eight-bits wide; The twelve most significant bits are not be used if not dealing with a linked list. It was 

also decided that a two port RAM be used so that two values can be read at the same time, halving 

the time needed to fetch data. 
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An additional Verilog file defines which address and data are input into the data RAM, given the 

control input “start_fetch” is high and the current instruction is: 

• LIS (indirect addressing): addr1 from the register ‘A’ (starting address) and addr2 from Rb 

(value to find) (0-1 and 2-3 bits of instruction word). 

•  FIB (direct addressing): address is directly in the twelve least significant bits of the 

instruction word (argument of Fibonacci function). 

• LCG: since this instruction needs three inputs, it cannot be fetched in one cycle. The first 

cycle, when start fetch is high, addr1 (content of Ra) fetches ‘A’ and add2 (content of Rb) 

fetches ‘B’. On the second cycle addr 1 (content of Rc) fetches value of ‘S’. The ‘start fetch’ 

input is delayed by one cycle with a flip-flop and is used as select line (fetch2_lcg) of a mux 

that, when high, selects the address of ‘S’ from the first port (add1_next, second cycle of 

fetch data state). Therefore, the fetch data state for LCG instruction needs one additional 

cycle. 

• STR or LDR: address found in bits thirteen to twelve of the instruction word. 

  

The “data_in_ram” input (twenty-eight bits) is needed only with store instructions, in which case the 

sixteen least significant bits are equal to the output of ‘Ra’ with the twelve most significant bits set to 

zero. 

 

Implementation of the specific Tasks and Testing 

Finally, the blocks of the specific tasks were implemented and connected to the required input and 

outputs. An additional option was introduced: if the 11th bit of the instruction word of LIS or LCG is 

high, instead of fetching the input values through indirect addressing the registers addressed by the 

instruction word directly contain the input value. Several tests were ran at this point, to check the 

functionality of each of the seven instructions, comparing the outputs with the predicted ones 

calculated on paper, and multiple instructions in series, verifying the CPU worked with various 

combination of operations in sequence. Below (Figures 40 to 43) are two of the most relevant 

waveforms generated by the CPU using different MIF files both for the data and the instruction RAM.  

TEST 1  

Given the following content of the data RAM (address in decimal, data in hex) 

 

 

Figure 40 – test 1 MIF file 
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FIB 0x009 (green); LDR 0x000 R1; LDR 0x001 R2; LDR 0x002 R3 (yellow); LCG R3 R2 R1 (orange); 

LDR 0x003 R1; LDR 0x004 R2; LDR 0x005 R3 (pink) 

 

 

 

TEST 2 

Given the following content of the data RAM (linked list)  

 

 

LDI 2 (yellow); MOV R0 R3 (green); LIS R3 (address of the value to be found = 0000) R2 (address of 

the starting address= 001) (orange) 

Figure 41 – test 1 waveform 

 

Figure 42 – test 2 MIF file 

 



Page 40 of 71 
 

 

 

During the optimization process, the register present at the output inside the RAMs were removed, 

speeding up the fetch process by one cycle. Some possible improvements to this circuit would be to 

add a jump instruction or an arithmetic one. Both these ideas would be fairly easy to implement: the 

first one would require adding an ‘if’ statement in decoder (if the opcode of JMP is present the state 

machine returns to the first cycle of fetch data and program counter output is equal to the address in 

the jump instruction). While for the second suggestion, an arithmetic unit (ALU for addition or 

subtraction, same multiplication unit used in task 2 for multiplication or slightly modified one for 

division) at the output of the accumulator would be added, making minimal changes in the data_in 

logic block. Another instruction that could be implemented is stop, by adding a Verilog block at the 

output of the instruction RAM with the following logic: if JMP opcode, all enable set to low, included 

the one of the program counter of the state machine. 

 

 

 

 

 

 

 

Figure 43 – test 2 waveform 
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Optimized CPU 

The optimized complete architecture uses the altered Fibonacci and Linked List blocks as well as the 

unaltered LCG block as the basis for its main computational unit. For these blocks to operate 

together, a common instruction register/decoder (IR) had to be created. To minimize the amount of 

code in the Verilog block for the IR, it was split into four units. One task specific decoder for each of 

the 3 possible operations, and a general IR whose sole purpose was to act as an enable line for each 

of the instruction specific decoders, and ensured that no operations were taking place when the 

address of the instruction RAM, which comes from the program counter (PC), was changing (Figures 

44).  

 

 

 

 

 

Figure 45 illustrates how the control lines from the general IR acts as an enable line for the task 

specific decoders. 

 

Figure 44.1 – input into general IR to disable operations during PC address changes 

Figure 44.2 – Verilog code for general IR 

High for the cycle the PC 

increases and the cycle 

thereafter. 
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When a task specific decoder receives the instruction data it performs its own fetch cycles to ensure 

the main task specific operating block has all the correct input before it starts operating; Each main 

operating block has some form of a direct or indirect enable line which stops it from operating. This 

required a different number of cycles, which were timed using a counter for each task. The 

implementation of the counter and each of the task’s IR operation is depicted in Figures 46.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Same situation 

for all other 

task IR’s. 

Does not operate 

when instruction 

input is 0. 

 

Figure 45 – Output of general IR and how it enables the task 3 (linked list) IR 
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Task  Counter Value Operation 

Fibonacci 0 Fetches ‘n’ from Data RAM 

 1 Inputs n into main operating block and 

enables it 

Random Number 0 Fetches A and B 

Generator 1 Fetches S 

 2 Inputs variables into main operating block 

and enables it 

Linked List Search 0 Fetches ‘head address’ address and search 

value address from registers 

 1 Fetches head address and search value from 

the Data RAM using address’ stored in 

registers 

 2 Inputs these values into the main operating 

block and enables it 

 

Figure 46.1 – Task 2 (random number generator) IR and its counter 

Keeps track of how 

many cycles have passed 

through the count value. 

Resets counter when task 

is complete in preparation 

for next instruction call. 

Figure 46.2 – Fetch process for each task  
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Other components added into the general architecture included a PC and an Accumulator (Figure 47), 

both implemented using counters with different settings and use the “complete” outputs of each task 

block to alter their current value.  

 

 

 

A 2-port RAM block (with eight, eleven-bit words), which was to be used for the indirect addressing of 

task 3, was added. To initialise variables into this RAM, a 4th instruction was needed which loaded 

addresses into the RAM directly. The execution of this instruction was implemented and tested to 

ensure the correct values were written to the correct address.  

The final complete circuit can be split into distinct sections as seen in Figure 48. At the start of each 

new instruction the general IR selects which task specific block is needed for the task. Once the task-

specific decoder performs its fetch cycle and the main operational block executes the instruction, the 

output is automatically stored into the Accumulator and the Program Counter is incremented by 1. 

 

 

 

 

Figure 47 – Program counter and Accumulator  

 
Inserts value from the task 

output blocks when they are 

complete; Retains its value 

otherwise. 

Inputs address to instruction 

RAM and increases when each 

instruction is complete. 
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The CPU was tested with Figure 49 being the format for the assembly line code used. To confirm that 

all the components correctly operated, the CPU was tested with Figure 50, this format is unique to the 

non-general CPU. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48 – Complete non-general circuit  

 

 

 

 

 

 

PC & Accumulator 

RAM & IR 

Lin
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d
 List Task 

Random Number Generator Task 

Fibonacci Task 
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Assembly Line Binary 

Fibonacci Task 

Operand Address of n Opcode 

[15:11] 

Address of n [10:0] 

FIB Data RAM 00001 Data RAM 

Random Number Generator Task 

Operand Address of a Opcode 

[15:11] 

Address of a [10:0] 

LCG Data RAM 00010 Data RAM 

Linked List Search Task 

Operand Search value 

address 

Head address 

 

Opcode [15:11] Search 

value 

address 

[5:3] 

Head address 

[2:0] 

LLS Task 3 RAM 00011 Task 3 RAM 

Loading Values to Task 3 RAM 

Operand Address Value Opcode [15:14] Address 

[13:11] 

Value [10:0] 

LDR Task 3 RAM Integer <= 2K 01 Task 3 RAM Integer <= 2K 

 

 

 

FIB   2  // n = 1 

LCG  8  // a = 1000, b = 3, s = 20 

LCG  16  // a = 1025, b = 5, s = 13 

LCG  8  //  a = 1000, b = 3, s = 20 

FIB   0  // n = 4 

FIB   2  // n = 1 

FIB   4  // n = 3 

LDR  2   24 

LDR  1   25 

LDR  3   0 

LLS   2   1 // search value = 36, head = 32 

LLS   3   1 // search value = 4, head = 32 

Figure 49 – Table translating the binary instructions to an assembly line code 

Figure 50 – CPU test code 



Page 47 of 71 
 

Figure 51 is a waveform that shows the instructions executed correctly through the changing 

Accumulator value, the default for an LLS value when the search value does not exist in the linked list 

is to update the accumulator to 0. 

 

 

Now the complete circuit was ready for functional tests to find maximum clock speed and power 

consumption along with the main bottlenecks of the circuit to further optimize the performance. Since 

all the task specific blocks were already tested no noteworthy errors were encountered during the 

creation of the general architecture, the implementation of task specific blocks was made easier 

through communication between the members who originally designed them.     

 

Functional Analysis and Optimisations 

When analysing the block, the main parameters that we are looking to improve upon are: 

• Maximum clock frequency (Fmax). Ideally, we want a clock frequency of 100MHz. 

• Power dissipation 

o Total Thermal power dissipation (excluding I/O power dissipation)  

o Dynamic Thermal power dissipation – Power dissipated from the switching of signals 

o Static Thermal power dissipation - Power dissipated from the circuit being on 

• Total number of logic elements 

Initial CPU Comparison  

Slack – “the margin by which a timing requirement was met or not met. A positive slack value, 

displayed in black, indicates the margin by which a requirement was met. A negative slack value, 

displayed in red, indicates the margin by which a requirement was not met [6].  

  General  Non-General  

Fmax (MHz)  52.71  91.94  

Largest slack  -8.970  -0.877  

Total power dissipation (mW)  297.43  68.67  

Dynamic power dissipation (mW)  197.56  25.66  

Static power dissipation (mW)  99.87  43.01  

Total logic elements  1737  895  

Total registers  453  170  

Total block memory bits  3,325,953  66,808  

  

Figure 51 – waveform corresponding to Figure 50  
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Initially, the non-general CPU was displaying much more desirable values and the slack was very low 

compared to the general CPU. Additionally, the power consumption is about 4-5 times lower with the 

number of logic elements being about half. A significant value here is the number of memory bits 

which requires attention to.  

 

Optimising the General CPU 

 

The performance of the general CPU was limited by the Fibonacci block which made it the focus of 

optimization. 

 

Initial analysis 

  

Properties  Values  

Max clock frequency (MHz)  49.78  

Total thermal power dissipation (mW)  237.4  

Dynamic thermal power dissipation (mW)  138.14  

Static thermal power dissipation (mW)  99.26  

Total number of logic elements  1085  

  

The main issue causing these undesirable values came from the extreme stack size of 65536 

addresses and 3,145,728 bits (due to the word length being 48 bits). Further research into how stack 

space would be used up when calling a function showed that for an input parameter of n, n address 

spaces would be needed. This means that the current configuration allows for a maximum input of 

65536 which is unnecessarily high; due to the how the expected input parameter is supposed to be 

quite low. The stack size was reduced to 32 addresses and as the address length could be reduced to 

5 bits, the word length was reduced to 37 bits. As a result, the stack now uses 1,184 memory bits.  

As stack traditionally uses space in the main memory (in this case the data RAM), it was appropriate 

to evaluate the effect of moving the stack into the RAM. Currently the number of memory bits used by 

the data RAM is 114,688 and the address length is 12. To accompany this address length, the word 

length used with the Fibonacci block would have to be extended to 44 which consequently extends 

the RAM’s word length from 28. This would increase the total number of memory bits by 64,352 which 

is much higher than the increase 1,184 memory bits when the stack is separate from the data RAM. 

Consequently, the stack was kept separate from the data RAM.  
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There was also a plethora of minor changes such as:  

• Replacing the register that stored the previous value in addition conditions with a d-type flip 

flop. This removed the need of a load signal to be output from the ‘valuecheck’ block.  

• Reducing the bit count of values used in the state machine and the ‘InitialCounter’. The state 

machine only used 4 states and the counter’s maximum value was 3 meaning both needed a 

minimum of 2 bits to function properly.  

• Deciding to use a counter to store the final value instead of a register.   

 

Properties  Counter  Register  

Fmax (MHz)  93.48  92.48  

Total Thermal Power Dissipation 

(mW)  

61.87  60.34  

Total logic elements  682  625  

  

Despite the register providing a lower power dissipation and reducing the area of this block, the 

maximum clock frequency was prioritized to get closer to the target frequency. Therefore, a counter 

was used clearing up unnecessary inputs into the ‘valuecheck’ block and unnecessary code in 

its verilog.  

  

Final evaluation  

 

Properties  Initial Values  Final Values  

Max clock frequency (MHz)  49.78  93.11  

Total thermal power dissipation 

(mW)  

237.4  57.84  

Dynamic thermal power 

dissipation (mW)  

138.14  16.66  

Static thermal power dissipation 

(mW)  

99.26  42.94  

Total number of logic elements  1085  618  

Total block memory bits  3,145,728  1184  
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Optimizing the Non-general CPU 

Optimizing the non-general circuit can come in the form of lower power consumption or higher clock 

speed. The initial power analyser summary showed that total power consumption was low, relative to 

that of the general circuit, at around 105 milli watts, most of which was a result of the RAM’s used in 

the design meaning that little change could come from power oriented optimizations. 

The main design improvements would likely be in the clock speed. A lot of the slack came from either 

connection to the stack pointer or to the task specific counters. Form here the first plan was to replace 

all task counters with a single task counter. However, that resulted in tasks 2 and 3 not operating 

correctly. An attempt was made to alter the instruction format for the Fibonacci instruction by 

replacing the address part of the instruction word with the direct value of n; This resulted in a 

significant decrease in the max clock speed to around 75MHz.  

In the end, no significant improvements were made to the non-general CPU. Task counter port widths 

were reduced, and some test outputs were removed resulting in the final maximum clock speed of 

91.96 MHz and a power dissipation of 106.34 as seen in Figure 52. 

 

 

 

 

 

 

 

Figure 52 – results from final timing and power analysis  
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Final CPU Comparison  

 

  General  Non-General  

Initial  Final  Initial  Final  

Fmax (MHz)  52.71  64.7  91.94  91.96  

Largest slack  -8.970  -5.456  -0.877  -6.874  

Total power dissipation (mW)  297.43  97.5  68.67  106.34  

Dynamic power dissipation 

(mW)  

197.56  54.38  25.66  63.28  

Static power dissipation (mW)  99.87  43.12  43.01  43.06  

Total logic elements  1737  1282  895  878  

Total registers  453  376  170  168  

Total block memory bits  3,325,953  181,408  66,808  66,308  

  

The general CPU has shown a significant improvement in every aspect but most of the non-general 

CPU’s properties have worsened. Despite the higher power total power dissipation, the non-general 

CPU still has the better clock frequency, logic element and register count. This increased total power 

dissipation comes from the higher dynamic power dissipation meaning the non-general CPU has 

more frequent changes in the signals.  

For practical use, the non-general CPU would be more effective due to its significantly better 

maximum clock frequency potential and its much lower area. The difference in power dissipation is 

negligible given its advantages.  

 

 

Project Planning and Management 

Early on during the project each of the group members were assigned Belbin roles based on a survey 

that was filled out. 

 

Name Top Two Roles 

Matilde Implementer Shaper 

Nelson Completer Finisher Implementer 

Bernard Co-ordinator Plant 

 

 

 

Figure 53 – Team members’ top predicted Belbin 

Roles 
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The predicted Belbin roles (Figure 53) were quite representative of how the team worked together. 

Bernard was the social leader whilst Matilde made sure that all the deliverables were ready on time 

and Nelson was continuously working to polish the final product. Frequent and clear communication 

between members was key and resulted in an organised work flow where each member was aware of 

what the others were working on at any given point which made it simple to implement design files 

made by different members. 

The meeting frequency was initially weekly, after the first 2 weeks of the project this was increased to 

every Thursday, Saturday, and Tuesday to accommodate for the increased workflow. 

 

  

Figure 54 depicts the originally planned series of events/milestones whilst Figure 55 show how the 

workflow turned out to be. 

  

  

 

 

Figure 54 – Initial Gantt chart 

Figure 55 – Final Gantt chart 
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Final Conclusions 

The final deliverables were two complete working CPUs, one designed to have a larger range of 

operations and flexibility; The other an optimisation based on the first which achieves a similar power 

consumption but at a higher maximum clock speed, sacrificing flexibility for performance. The more 

general CPU gives the opportunity to easily implement new and more complex tasks in the future 

whilst the optimised will be credited for its superior performance (relatively speaking). 

If given more time, additional tasks would have been implemented into the general CPU. These could 

include traversing the linked list and instead of searching for a value, a logic block could be 

implemented to add a node in a sorted linked list. This would be done by finding the first value (B) 

bigger/smaller than a given value (N). Then storing N with a pointer to the address of B (STR N 

setting first 12 bits to address at which the search has ended). Subsequently, change the value of 

pointers of previous elements to their new correct values (this could be done by storing intermediate 

values in a register whilst the list is being altered). 

The initial plan for the project ended was followed through to a satisfactory standard. This largely due 

to successful communication between members and proper organisation as well as continued 

documentation from the beginning. 
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Appendix 

 

Screenshots of complete non-general CPU: 

 

Instruction and Data RAM 

 

 

General IR 
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Program Counter and Accumulator 

 

 

Blocks for Linked List Search Instruction 
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Blocks for Random Number Instruction 

 

 

Blocks for Fibonacci Instruction 
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Verilog Code from the Non-general IR 

General IR 

 

 

Fibonacci Task IR 

 

 

 

 

 

 

 



Page 59 of 71 
 

Fibonacci Task – block to check if n < 2 at when the task counter is not equal to zero 

 

 

Fibonacci Task – block used to output correct signals to the task output register when n < 2 
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Main Fibonacci Operating Block – 1/5 
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Main Fibonacci Operating Block – 2/5 
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Main Fibonacci Operating Block – 3/5 
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Main Fibonacci Operating Block – 4/5 
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Main Fibonacci Operating Block – 5/5 

 

 

Fibonacci Task – output block 
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Task 2 multiplication 

 

stp lcg  

 

Enable LIS 

 

Next instruction 
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State machine  

 

Decoder  

 

Accumulator input logic 5 
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Data in ram 

 

 

Nelson’s main Fibonacci block code 

Valuecheck if conditions  

If condition ‘1’  
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If condition ‘2’  

  

If condition ‘3’  

  



Page 69 of 71 
 

If condition ‘4’  

  

If condition ‘5’  
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If condition ‘6’  

  

If condition ‘initialising’  
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If condition ‘oneorzero’  

  

 


