
ELEC40006 - Electronics Design Project 1 2019-2020

Option 2: Central Processing Unit

Group name: “this is fine”

• Bernard Benz

o bfb19

o Electronic and Electrical Engineering, Year 1

• Matilde Piccoli

o mp2419

o Electronic and Electrical Engineering, Year 1

• Nelson Da Silva

o nmd19

o Electronic and Electrical Engineering, Year 1

Word Count: 10414

Submission date: 14th June 2020

Imperial College

Page 2 of 71

Index

Introduction………………………………...……………………………………………………………...Page 3

Outline…………………………...………………………………………………………………………...Page 3

Design Criteria…………………………………………………………….……………………………...Page 3

Design Process…………………………………………………………………………………...Pages 4 to 51

 Task 1 – Fibonacci Sequence………………………………………………………....Pages 4 to 21

 Optimising Task 1….………………………………………………………...Pages 12 to 21

 Task 2 – Random Number Generator…………………………….………………...Pages 21 to 24

 Task 3 – Linked List Search……………………..…………………………………...Pages 25 to 29

 Optimising Task 3………………………………………….………………...Pages 28 to 29

 The Complete CPUs…………………………………………………………..……...Pages 30 to 47

 General CPU………………………………………….……………………...Pages 30 to 40

 Optimised CPU……………………………….……………………………...Pages 41 to 47

 Functional Analysis and Optimisations……………………………………………...Pages 47 to 51

 Optimising the General CPU…………..…………………………………...Pages 48 to 49

 Optimising the Non-general CPU…………………………………..……...Pages 50 to 51

Project Planning and Management…………………………………………………………...Pages 51 to 52

Final Conclusions…………………………………………………………………………………….....Page 53

References……………………………………………………………………………….……………...Page 54

Appendix………………………………………………………………………………………....Pages 55 to 71

Page 3 of 71

Introduction

This report covers the results and design process of team “this is fine” ‘s EEE1 end of year project,

detailing the methodology and planning behind the project as well as the implementation into Quartus

and the errors encountered leading up to the final complete CPU and its operation/performance.

Outline

The task is to use Quartus Prime to design a CPU with an ISA that performs the following tasks:

calculates Fibonacci numbers using recursion, calculates pseudo-random integers with a linear

congruential generator and traverses a linked list to find an item. It must be designed with features

‘chosen carefully to achieve the best performance in the greatest number of applications for the

smallest number of transistors.

From the specification [2] the following key elements were identified: A stack to keep track of

intermediate variables of a recursive function, the implementation of multiplication for two sixteen-bit

integers, and traversing a linked list (stored in RAM) using indirect addressing.

Additionally, the instruction words had to be encoded to provide an assembly line translation of them.

No specific requirement on the architecture of the CPU was required, but it was agreed that an

efficient and fast circuit was needed, but one could still be easily modifier to compute more general

instructions, such as loading or storing, and more complex operations than the ones in the

specification [2].

Design Criteria

Approaching this task was done with Product Design Specification in mind as the CPU, despite being

a digital design, emulates a real-world product and will therefore have specifications more akin to

hardware rather than software.

Performance. It is essential that after the functional requirements for the CPU have been achieved, a

lot of optimisation is needed to ensure this functionality is provided with minimal components, minimal

power consumption and a high clock frequency.

Size. Whilst there are no restrictions on the physical size of the CPU, it is essential that the number of

components is as limited as possible, as detailed by the spec which highlights the necessity of

optimisation.

Quality and Reliability. The CPU must provide consistent results and should operate correctly for

corner cases. It is important that after an instruction has been completed, the functionality is retained

and can perform further operations with consistent outputs.

Timescale. The project was set mid-May with a deadline of June 14th. Proper planning must be

implemented to ensure the CPU is functioning early on so that later, more time can be allocated to

optimising and writing up the final report

Page 4 of 71

Testing. A necessity that should be done regularly as it aids in identifying errors throughout the design

process. It should be done thoroughly to ensures the CPU works for all possible input values.

Documentation. Proper documentation is important as half of the final grade comes from the report.

Additionally, it is useful for personal use to better recount how past errors were solved. Keeping note

of why changes are made help members understand why design aspects, made by others, exist.

Design Process

The plan for the design process was for individual members to be assigned one of the 3 “tasks”

(operations required by the specification) to design a block which would execute it. Once tested,

these blocks would be compiled into 2 similar but distinct general architectures that would run these

instructions. One version was aimed to be a more flexible CPU able to run other instructions as well

as more easily incorporate new instructions which used features introduced by the 3 tasks blocks, e.g.

the stack or indirect addressing. This general CPU would then be converted into an optimized CPU

which prioritises performance and removed all functions not related to the 3 required tasks, trading

flexibility for performance. Though both versions would undergo functional analysis, the non-general

CPU (performance-oriented version) would be the focus of optimizing after analysis, aiming for a

higher clock speed and lower power consumption than the general CPU.

Task 1 – Fibonacci Sequence

The task was to implement the recursive function in Figure 1 which calculates the nth term of the

Fibonacci sequence using a stack which stores temporary variables created in the process. The stack

could be implemented with either custom hardware or data memory.

Stack memory is “a special region of your computer’s memory that stores temporary variables created

by each function” [3]. This means whenever a fib() function is called, a location stack is allocated for

this function, along with a return address, until it is completed. Then, this location in stack is freed and

“that region of memory becomes available for other stack variables” [3]. Consequently, stack is

usually referred to as a ‘last in, first out’ [3] data structure.

Figure 1 – Fibonacci function in C++

Page 5 of 71

Traversing the stack requires a stack pointer, ‘a register holding the address for the stack’ [1]. A stack

pointer makes it possible to choose where new data is inserted and where data must be freed up after

a function is completed.

Early version used the idea of taking an input (n) and decrementing it using verilog logic until a 1 is

returned. Figure 2 shows a system where an input would determine where the returned value 1 is

initially stored.

Once the initial returned variable 1 is stored, a recurring addition system where the stack pointer

decrements would lead to the final returned variable being stored in 0th position in stack. However, it

became clear that this is not a correct representation of the given Fibonacci function (Figure 1), as

well as not being the correct use of stack memory, despite it providing the desired results.

Additionally, despite the system’s simplicity, it would not be usable for other recursive functions that

could work with the architecture; this design would only be suitable for functions where repeated

addition of the previous two values occurs.

Rather than storing just the individual data value for each variable, the input parameter (n) and the

return address of the function, which this local variable will be returned to, should also be stored [4].

Despite forcing an increase in the stack word size, making this change will allow the architecture to

work properly for other recursive functions with the proper adjustments.

Using this information as well as reinforcing the necessity of stack’s ‘last in, first out’ principles created

a more flexible architecture that better suited the specification (Figure 3)

Figure 2 – a draft diagram of the stack pointer

Page 6 of 71

Note that Figure 3 excludes some registers used to acquire inputs into the valuecheck block.

Word sizes

• Stack instruction words (48 bits)

o Input variable n (bits 47-32)

o Return address (bits 31-16)

o Returned variable y (bits 15-0)

• Inputs

o Opcode (4 bits)

o Data (16 bits)

• Outputs

o Final returned value (16 bits)

o Final value pulse (1 bit)

Figure 3 – diagram for final version of the stack pointer

Page 7 of 71

How it worked

The decoder block called ‘valuecheck’ (Figure 4) handles the signals around the circuit and operates

based on different ‘if’ conditions. These conditions are triggered depending on inputs from around the

circuit; there are eight ‘if’ conditions in total: 1, 2, 3, 4, 5, 6, ‘initializing’, and ‘oneorzero’.

Initialising the first value

This architecture is designed so that the operations only begin when the correct opcode is detected

by the ‘initialstate’ block meaning the input data can vary whenever the instruction is not being called

without affecting anything. When the opcode is detected, the ‘initialstate’ block outputs a pulse

indicating that a value is being loaded in subsequently incrementing the counter called ‘InitialCounter’.

The counter increments again causing another pulse to output from the ‘initialstate’ block. The counter

increments again but no pulse is sent out at this point, remaining at a value of three until the final

value has been calculated.

The two-cycle pulse sent out by the ‘initialstate’ block (called ‘initialpulse’) is input into the

‘statemachine’ block which starts a two or three cycle system (depending on current conditions) used

to calculate and write in the next value into the stack.

Figure 4 – valuecheck decoder block

Page 8 of 71

This two-cycle pulse is also input to ‘valuecheck’, triggering the ‘initialising’ condition in the

‘valuecheck’ block, causing the following:

• Cycle 1 – MUX3 selects the input parameter as the input data into the stack.

• Cycle 2 – This value is written into the stack’s 0th address

Before the input variable can be written to stack, it is extended to match the world length of the stack

using the ‘inputextender’ block which fills the 21 LSBs with 0s.

Working towards the final value

Once this variable has been input into the 0th position of stack, the ‘valuecheck’ block identifies what

set of signals to output to the circuit and calculates the new value to store in the RAM. From the initial

value onward, the resulting actions are dependent on the input. For an input of one or zero, the

‘valuecheck’ triggers the ‘oneorzero’ condition designed for when the input parameter (n) is one or

zero and the expected result is one:

• Cycle 1 – Produces the output data value of 1 and writes this into the stack’s 0th address.

• Cycle 2 – Storing the previous output’s data value of 1 into the register that stores the final

calculated value. The stack’s 0th address is then overwritten with a null value so that the stack

is ready for a new Fibonacci function.

However, if the input parameter (n) is not one or zero, condition ‘3’ is triggered calling fib(n - 1):

• Cycle 1 – The stack pointer is incremented since calling a new function means another spot in

stack is occupied.

• Cycle 2 – The new output value is generated; this is the previous value with the input variable

decremented and the return address adjusted to call the previous function. This new value is

written into the RAM in the same cycle.

Note that for the following tables, all values are in hexadecimal

current

function line

function calls stack address value of n return

address

data value

fib3 fib3 0000 3 (0000) by

default

0000

 y = fib2 fib2 0001 2 0000 0000

 y = fib1 fib1 0002 0001 0001 0001

Page 9 of 71

Once a point has been reached where the input variable (n) is one ore zero, the condition ‘1’ is met

where the data value of the return address is incremented once:

• Cycle 1 – A data value set to 1 is generated. The ‘isolatedata’ block (Figure 3) sets the rest of

the word excluding this data value to zero. The stack pointer is updated with the return

address so that this value will be read out in the next cycle.

• Cycle 2 – The value read out from the return address is added to the output of one, from the

‘isolatedata’ block, using the ALU. Additionally, MUX4, the multiplexer controlling inputs to

stack is made to take inputs from the ALU

• Cycle 3 – This new value is written into the stack to overwrite the return address value.

MUX7 is needed for these 3-cycle conditions so that the input to the ‘valuecheck’ block does not

change at the 3rd cycle. Once the 3rd cycle has been reached, the signal EXEC3 is used as a select

line for MUX7 so that it switches to a delayed value of the stack output. This ensures that 3-cycle

conditions are fulfilled.

current

function line

function calls stack address value of n return

address

data value

fib3 fib3 0000 3 (0000) by

default

 0

 y = fib2 fib2 0001 2 0000 1

The ‘valuecheck’ block then determines that a fib(n-1) function has just been completed and the fib(n-

2) function has yet to be called. Condition ‘4’ performs the new function call:

• Cycle 1 – Generating the new value where n has been reduced by 2, the return address has

been set to the previous address and the data variable is cleared. The stack pointer is

incremented.

• Cycle 2 – This new value is written to stack.

current

function line

function calls stack address value of n return

address

data value

fib3 fib3 0000 3 (0000) by

default

 0

 y = fib2 fib2 0001 2 0000 1

 y = y + fib(0) fib0 0002 0 0001 0

Page 10 of 71

Condition ‘1’ is met again in this transition.

current

function line

function calls stack address value of n return

address

data value

fib3 fib3 0000 3 (0000) by

default

 0

 y = fib2 fib2 0001 2 0000 2

The ‘valuecheck’ block also knows if a fib(n-2) function has just been completed, now the data

variable of the original function must be input to the return address. These instructions come under

the if condition ‘5’:

• Cycle 1 – Data value is isolated using the ‘isolatedata’ block. The stack pointer also updates

with the return address

• Cycle 2 – The value from the return address is read out and added to the previous data value

using the ALU. MUX4 is set to direct the ALU output into to the stack.

• Cycle 3 – The ALU output is written into the stack.

current

function line

function calls stack address value of n return

address

data value

fib3 fib3 0000 3 (0000) by

default

2

Since fib(2) was the fib(n - 1) function of fib(3), the condition where fib(n - 2) must be completed is

triggered again (‘4’).

current

function line

function calls stack address value of n return

address

data value

fib3 fib3 0000 3 (0000) by

default

2

 y = y + fib1 fib1 0001 1 0000 0

current

function line

function calls stack address value of n return

address

data value

fib3 fib3 0000 3 (0000) by

default

3

Page 11 of 71

The final value is stored in the 0th address and the 16 relevant bits are stored in a separate register.

The ‘valuecheck’ block detects this through the condition ‘6’:

• Cycle 1 – A signal is sent to the ‘sload’ input of the ‘final value’ register (Figure 3) which

allows a value to be loaded in. This same signal is output from the block to indicate that the

final value has been calculated. A null value is also generated to overwrite the 0th address to

bring the block into a ‘rest’ state. The counter from the beginning is reset to allow for a new

input instruction.

• Cycle 2 – This null value is written into the stack.

The rest state/condition ‘2’ is used when nothing is happening with the fib block thus, there are no

outputs or changes in the circuit. In both cycles, all signals are set to zero so no values can be written

in making the circuit ready for a new input.

Evidence of functionality

Figure 5 test inputs of n: 0, 5, and 1. Note that once the final value has been calculated, the opcode

switches; this switch is causes by the rest of the CPU.

Figure 5 – test waveform

Figure 6 – test waveforms for FVsig

Page 12 of 71

All the test results are correct (Figure 6) and when they are calculated the FVsig output pulses

correctly.

The current architecture allows flexibility when implementing other recursive functions due to only

needing to make modifications to the ‘valuecheck’ verilog such as the conditions and the signals sent

out. However, recursive functions that do not solely use addition will need additional hardware.

Optimising Task 1 – Fibonacci Sequence

Planning

The implementation of the Fibonacci task was done in 2 different ways. The method detailed above

was used in the general CPU whilst the other was optimised to be more task specific and less flexible.

This version will be the discussed in the following section.

The process of designing the block, similarly to the other Fibonacci block design process, began with

research about the stack and how it typically works as this was the main feature this task introduced

[1].

In the case of the recursive function from the specification (Figure 1), the stack would need to contain

the current value of n as well as the current value of y, both of which are sixteen-bit integers.

Figure 7.1 – Opcode format

Page 13 of 71

Once this was established, the focus was directed to how the stack would look like during operation,

including the values contained and word size, and how the stack pointer changes during operation.

The initial conclusion was that the C++ function given (Figure 1) had 3 possible outcomes each time a

new n was inputted: either n was one or zero in which case the return value is one, n is greater than

one and the function calls on itself with the new input n being one less

than the current n, or ‘y = fib(n - 1)’ has been performed and now ‘fib(n

- 2)’ is being added on. From this came the first alterations to the

general implementation of stack to make it more optimized to solely

run this task, the removal of return address’, using instead an opcode

to indicate which of the three positions the function was currently in

(Figure 7.1). Figure 7.2 briefly illustrates how the opcodes would

interact during runtime.

The word length of the opcode is five bits so that the first operand

could come directly from the instruction word, which is separated into

five bits of opcode and eleven bits which contained the address of the

starting value of n stored in the data RAM. From this the stack word

size would have to be thirty-seven bits to accommodate for the two

sixteen-bit integers (n and y) and the five-bit opcode. This meant it

would be better to keep the stack separate to the data RAM, which had

a sixteen-bit word length [2], so that all the variables (OP, n, and y)

could be fetched in 1 cycle. The stack was implemented using a 1-port

RAM with 32 words (Figure 8).

Figure 7.2 – diagram of opcode use
Figure 8 – Stack

Page 14 of 71

After it was clear what the stack would contain during operation, the new focus was how the stack

pointer would traverse this information. The address contained in the stack pointer could either

increase or decrease; in the case of it increasing it would only ever increase by 1 when new items

were added to the stack; This is easily implemented by incrementing the value of the stack pointer.

The stack pointer would decrease only in a specific case where it completes the following set of

recursions shown in Figure 9. From this it is inferred that in cases where the stack pointer decreases

in value, it does so by two. From here all the possible stack pointer operations needed were an

increase by one or decrease by two, and a reset function all tasks are complete, effectively resetting

the stack size to zero. At this stage, implementing and testing in Quartus began.

implementation

The stack pointer (Figure 10) was implemented using a counter and an adder; The counter would

increase when the ‘up’ input was high as it was connected to the count enable of the counter.

Decreasing the address of the counter by 2 was done by connected the ‘down_two’ input to the

‘sload’ port of the counter and having the input address as always equal to the current address minus

2.

Figure 9 – Situation needed for stack address

decrease

Page 15 of 71

The first error encountered is seen in Figure 11. The problem was that the function was not returning

to previous recursions correctly, it would only continue to perform OP2’s (Figure 7.1) until the current

value of ‘n’ was less than two, at which point it performed an OP3 (Figure 7.1) meaning that any initial

input of ‘n’ yielded an output y of two. It was clear that there needed to be a way to distinguish when

an item in the stack had been completed and the stack pointers value had decreased. This was done

by inserting in a delayed input of the ‘down_two’ signal back into the main operating block, resulting in

different operations when there was a ‘down_two’ output last clock cycle.

Figure 11 – Incorrect Waveform for fib(5)
Output was X here onward

Figure 12 – Verilog when down_in is high

Figure 10 – Stack Pointer

An 8-bit stack pointer address

was initially used before the

stack size was decreased to

32 bits.

Page 16 of 71

Figure 12 is the Verilog code for the situation depicted in Figure 9 after the stack address is

decreased by two. It also meant that somehow when the items were complete, the y value needed to

be stored and inserted back into the old instruction the stack pointer is pointing at, which resulted in

the use of a carry in and carry out mechanism.

Figure 13 works by taking the y output that needed to be re-inputted into the main operating block

(carry_out) and inputting it into a counter which would then update at the next clock cycle. This meant

that the ‘carry_out’ value would be inputted as the new ‘carry_in’ value one cycle later when the stack

address is lowered. This value would then be used as seen in Figure 12.

At this point in time some changes to the original opcode format for the task were made this new

format is explained in Figure 14.

Opcode name Binary value Significance

OP1 00001 Used for the initial fib(N) instruction directly from the instruction

RAM

OP2 00010 Used for the first iteration of y = fib(n – 1) where n = N

OP3 00011 Used for the first iteration of y = y + fib(n – 2) where n = N

OP4 00100 Used for the all other iterations of y = fib(n – 1) where n ≠ N

OP5 00101 Used for the all other iterations of y = fib(n – 1) where n ≠ N

Once these changes were made a timing issue was spotted. There was a delay between the

changing of the stack pointer address and when the correct set of data would be outputted. This was

previously unnoticed since the settings of the RAM used for the stack were such that when the

address is changed and the stack is being written to, the output of the stack would always be the new

Figure 13 – carry_out delay block

Figure 14 – New opcode format

Page 17 of 71

value that was being written to it meaning there was no delay between when the value was inputted

and when the stack outputted the value. This however meant that when the address of the stack

pointer was changed and the stack was not being written to, the stack would take an extra cycle to

output the correct values.

This was solved by implementing a general delay which meant that the main operating block would

only change its outputs every other cycle to ensure it was receiving the correct outputs from stack.

Figure 15 shows how this delay was implemented. When ‘delay_in’ is high, the main operational block

does nothing and ‘delay_out’ is set to low; when ‘delay_in’ is low the block would operate normally

and ‘delay_out’ would be set to high.

This meant that several input variables as well as write enables also had to be delayed for everything

to operate at the correct timing. This resulted in a doubling of clock cycles needed to complete a fib(n)

instruction.

Now operation was fine for a single execution of the Fibonacci function. Additions to the circuit were

made to allow for multiple executions of the function to be made in a row.

Figure 16 shows an output block for the Fibonacci task which takes inputs from the main operating

block and had outputs that included: a ‘complete’ output signal that indicates when the main operating

block finishes executing its current instruction, the ‘final_answer’ to the current instruction, and a

‘reset’ output so the stack pointer points to address 0. This was implemented using a verilog file.

Figure 15 – delay flip flop

Figure 16 – Fibonacci output block

Page 18 of 71

A problem arose when automating the fetch cycle of the Fibonacci block (this is discussed later in the

section regarding the optimized complete architecture) for it to take multiple inputs in a row. The error

was that it would not work for initial values of ‘n’ that were less than two, which did work prior to

automation. This was solved by introducing a separate operating block for cases where the initial ‘n’

was one or zero (Figure 17) which had an enable input, that was high when an ‘n’ coming from the

data RAM was less than two, and had output: ‘y_one’ (which was always equal to one in sixteen-bit

binary), ‘select_one’, and ‘complete_one’. As a result, BUSMUX’s had to be connected to the inputs

of the output block (Figure 16) in order change whether it took ‘answer_in’ from the main operating

block or the block in Figure 17.

After testing another problem was identified which was a consequence of the delay mechanism

(Figure 15); The block was in effect just a clock with half the cycle speed of the actual clock.

Consequently, if the main operating block would receive the initial fib(n) instruction, from the

instruction RAM, when ‘delay_in’ was high, the whole Fibonacci block would not work. This was

solved simply by extending the time in which the initial inputs of the main operating block come from

the instructions register (Figure 18).

Figure 17 – Block for fib(n) where n < 2

Page 19 of 71

Final operation

Figures 19 explain the operation of the complete Fibonacci block.

Figure 18 – BUSMUX for op_in of main operating block

Figure 19.1 – main operating block

Page 20 of 71

Component Name Reference Figure Number Function

Opcode BUSMUX 13 Used to change where the main

operating block gets op_in from

n BUSMUX 13 Used to change where the main

operating block gets n_in from

Main operating block 14.1 & 12 Describes figures 12 and 14.1 combined

and is used to alter the value of the stack

pointer. Also outputs the value to be

written to stack. And controls the output

block.

Output block 11 Outputs the final answer and a

“complete” signal the cycle the fib(n)

instruction is complete

Stack Pointer 5 Contains the current address to stack

Stack 3 Used to store intermediate values during

operation

Figure 19.2 – Simplified diagram of Fibonacci block

Figure 19.3 – Table of operation for Figure 19.2

Page 21 of 71

Final tests were conducted to illustrate that the block worked for single and multiple instructions in a

row, as shown in Figure 20, and was now ready to be implemented into the complete architecture.

The main cause of problems throughout the design process of the optimized Fibonacci block came

from the physical restrictions of hardware components, either in the form of delays of clocked

components or the difference between the theorised operation and actual operation of certain blocks.

Overall, no major problems arose due to time spent planning the process and designing on paper

before implementing anything into Quartus.

Task 2 – Random Number Generator

The Multiplication Block

This block computes binary multiplication by performing series of shifts and additions. This method

can perform multiplication of sixteen-bit integers in a single cycle as it pipelines the adders. The

resulting circuit (Figure 21) is composed of two parts. The first a Verilog file performing the shift; One

of the two multiplicand word is taken as argument (A) and the other (B) is used to decide when to

perform the shift on the argument. Every time a bit of B is high, a shift left is performed ‘N’ times on a

copy of ‘A’, ‘N’ being the position of the high bit in ‘B’ (if the ‘Nth’ bit of B is 0, the copy will just be set to

zero. The second part consists of a pipelined series of adders adding two of the shifted copies of A at

time. Since the Verilog block and the adders are not clocked, the process is not subject to any delay

and the result will be ready in the next cycle. Since word length of the integer variables used is

limited, if the resulting number exceeds sixteen bits, the result will be different from the calculated

expected.

Figure 20 – waveform of working Fibonacci instructions

Instructions used for test were fib(4), fib(1), then fib(3) Ignore RAM state here

Page 22 of 71

Random number generation logic

At first, the linear congruential generator was designed manually, then implemented on Quartus. The

circuit was designed to execute the above code (Figure 22) using the multiplication unit and two

addition units (Figure 23) one implementing ‘y = y*a + b’ and the other ‘sum = sum + y'. A block was

created to implement these additions and was implemented in the final task 2 circuit.

Figure 21 – multiplication block

Figure 22 – code from the specification

Figure 23 – addition unit

Page 23 of 71

Complete Task 2 Circuit

The final circuit used a loop connecting the outputs ‘sum' and ‘y' to the corresponding inputs. Two

multiplexers were placed to choose the starting values of y (input) and sum (zero when initialised) for

the first cycle of the loop, when a start input for the whole task is high. Another MUX was used for the

output stage selecting zero unless the complete output of the task is high, in which case the MUX

outputs the final value of ‘sum’.

An additional block was included in the complete task 2 circuit (Figure 24) that sets the maximum

number of loops allowed (given by the input ‘N’). The final circuit was made with a Counter and an

Adder that subtracted ‘N’ from the output of the counter. When the difference between the two values

is zero, a complete output is produced by a Verilog block, disabling the counter, and enabling the

output stage of the task. The start output is also used to clear the counter so that is set again to zero

at the beginning of the next instruction.

After testing the circuit noticed that the main operating block had undefined behaviour. This was

solved by clocking the inputs to this block using DFFs ensuring that the block would only change

outputs once a clock cycle.

Figure 24- complete task 2 circuit

Page 24 of 71

Final Testing

The task was compiled into a single symbol and was tested to check the functionality with given

inputs. The inputs required by the circuit are the values of ‘A’, ‘B’, and ‘S’ (from the Data RAM) and ‘N’

(set to 16 according to the specification [2]), the clock input and the start input (later automated using

a state machine). The outputs produced are the final ‘sum’ value and a ‘complete’ output, that will be

used increment program counter. Other additional test outputs were made to check intermediate

values during operation.

After testing the circuit with different inputs, it was confirmed that when the start input high for one

cycle (excluding the first cycle) instruction starts to be executed and the loop continues (Figures 25).

This is shown by the changes in the intermediate values and stops when counter reaches the

maximum value (sixteen cycles). Comparing the final output with the manually calculated answer

confirmed the circuit is working as expected. Figures 25 are the two most relevant tests results which

confirm the behaviour previously explained. The task 2 circuit was now ready to be implemented into

both CPUs since it already optimised.

Figure 25.1 – test waveform

Figure 25.1 – test waveform

Page 25 of 71

Task 3 – Linked List Search

Selection an Implementation Method

Multiple implementations were initially considered before settling on the following method. The linked

list was implemented by storing both elements (value and next pointer) of an item into the same

memory location using a twenty-eight-bit wide data RAM. The 12 MSBs of the word contain the

address of the next pointer and the 16 LSBs contain the value. This method to be simpler in terms of

implementation and more effective since it does not require any new piece of hardware.

Indirect Addressing and Registers

A register was needed to store the memory content and the current address while traversing the

linked list. It was decided that an indirect addressing block would be in the final general CPU which

allows for different operation on linked list (e.g. inserting a value). It was noticed that the task itself

does not require indirect addressing since a comparator can be used to know if the search value is

not found, the 12 most significant bit of the data out can be directly fed into RAM. Consequently, the

task used a register to control when the address input into the RAM changes, and a comparator that

produce ‘complete’ output if the value coming out of the RAM is the search value.

Control inputs

The output stage consisted of a multiplexer that outputs the current address, if the value at that

address corresponded to the search number, or a series of zeros otherwise. If the address of the

found value is zero, it could be misinterpreted if the value were found or not. To solve this a signal

was made indicating when the task is done so that the CPU can recognise when the task is and the

found address is zero.

A block was made to identify when the next address is a null pointer, this produces an output

(value_not_found) that stops the search by disabling changes in the register containing the address

and enables the CPU to execute the next instruction. The ‘complete’ signal comprised of both the

‘value_found’ and the ‘value_not_found’ signals.

Page 26 of 71

After running initial tests, it was identified that very first cycle of the instruction the complete output

signals was high. To avoid the block ending the instruction before even beginning to execute, a

verilog block was implemented that when the enable is high whenever start is high or, both ‘found’

outputs are low. The start input is also used to clear the comparators. The final circuit is seen in

Figure 26.

Final Testing

The circuit was compiled into a single symbol file and connected data RAM. The initial inputs needed

by task block are the starting address and the search value a clock signal and the start value. The

final outputs are the memory address where the value can be found and the two ‘complete’ signals.

A MIF file was made to test the case in which the value is found (Figure 27), and one that test a list

that leads to the break condition/null pointer (Figure 28). Additional outputs were added to check the

entire functionality. The two simulations showed the expected outputs both in terms of the final

address and the behaviour during operation.

Figure 26 – complete output

Page 27 of 71

The final version of this task takes as many cycles as the number of nodes traversed due to final

optimisations made prior to implementing in the general circuit.

Figure 27 – test MIF file “value exists” and corresponding waveform

Figure 28 – test MIF file “value does not exist” and corresponding waveform

Page 28 of 71

Optimizing Task 3 – Linked List Search

To form the optimized block for task 3, alterations were made to the original block so that it would

operate with a sixteen-bit memory word length. Changes that were made involved changing bus

widths as well as introducing a block connecting the next pointer address input to the search address

output, these changes can be seen in Figures 29.

Outputs value_A_address and next_B_address are the address inputs for port A and B of the data

RAM meaning that item value and next pointer can be fetched at the same time. These changes were

implemented with the assumption that the “value” and “next” pointer of each item in the linked list

differed by 1 in their memory location and were made to take advantage of the RAM being a 2-port

RAM instead of the 1-port in Figure 29.1. This was then tested for single and multiple inputs to ensure

outputs were still correct (Figure 30).

Figure 29.1 – unchanged task 3

block

Figure 29.2 – highlight of changes made to Figure 16.1

Data RAM

word size was

28 bits

Block to add 1

to address of

next pointer

Page 29 of 71

Figure 31 is a complete output signal that was formed by ANDing the ‘found’ OR ‘not_found’ signal

(which indicate if the search value does/does not exist in the linked list) with NOT ‘start’ (which was

set to low during operation and high otherwise). An assumption was made with the implementation of

this task for the non-general CPU, the “Next” pointer value for any item in the linked list could never

be zero (unless it was a null pointer).

Figure 30 – working waveform for 2 linked list search instructions

Figure 31 – logic for task 3 “complete” signal

Instructions were a linked list

where the search item existed,

then one where it did not.

Task complete and address was found.
Task complete and item was not found

(defaults to 0 as the ouput).

Page 30 of 71

The Complete CPUs

Initial decisions

The CPU is characterized by a flexible design that can adapt the task blocks to execute other

instructions relating to the task as well as additional unrelated instructions such as load and store.

Both CPUs have the following general characteristics: two separate RAMs (Data and Instruction), the

use of 16bits word for data path, the use of one only instruction that take multiple cycles to execute a

specific task, following the CISC model of architecture [5] since found it to be faster in terms of clock

cycles than executing multiple simple instructions.

The General CPU

Overview

This CPU is characterized by a flexible design that can adapt the task blocks to execute other

instructions relating to the task as well as additional unrelated instructions such as load and store.

The CPU was first designed on paper, listing all the elements needed to perform the most basic tasks

(load, store etc.). Then it was built in Quartus (Figure 32) and after testing the functionality of the

control and data paths, the specific tasks’ blocks were added. Adjustments to the general circuit were

made to produce the needed inputs. A block was created and to implement the option to fetch the

inputs for task 2 and 3 by either indirect addressing or by fetching from a register.

Figure 32 – General CPU design file

Page 31 of 71

ISA

Since the tasks performed by the CPU require different information in the instruction word, every

instruction is divided differently. If the two most significant bits [15:14] are both 1, the opcode will be

four bits long [15:12] otherwise the opcode is only 2 bits. Depending on the instruction, the rest of the

word contain either a RAM address or a registers address in which the address/value is stored

(Figure 33) explains the instruction word structure and provides more details on the functionality of

each operation.

Instruction section and control path

This first section (Figure 34) of the CPU is composed by:

• Program Counter: incremented by the decoder at the end of each instruction it contains the

instruction RAM address.

• Instruction RAM: initialized to have a test program.

• Instruction Register: updated with the contents of the instruction RAM at the beginning of

each fetch state.

• Decoder: enables control lines based on the current state and instruction

• ‘Next instruction’ Block: defines when a task is complete, and the next instruction can be

fetched

• ‘Accumulator input’ Block: that defines which sixteen-bit word is input into one of the four

registers

• Accumulator and “indirect addressing” block: four register that can be written to and read from

(three at time: Ra, Rb, Rc). Register 0 can be used as an accumulator

Figure 33 – ISA for the general CPU

Page 32 of 71

Decoder and state machine block

Both are controlled by a counter (PC) (Figure 35) that counts the number of cycles passed, resetting

at every new instruction:

• PC 0,1,2 state: “fetch instruction”

• PC 3, 4, (5 for LCG) state: “fetch data”

• PC 5 (6 for LCG) state: “execution”

The counter stops during the execution and it is cleared when the instruction is done. After testing, a

co-dependency between the state machine- decoder block and the next instruction logic was

identified. Since they are both combinational logics, if one changes, the other does, resulting in a loop

causing an error in the waveform. A multi-bit wide DFF was added (Figure 34) giving a one cycle

delay between the changes of the two blocks, avoiding loop. For the same reason, a DFF was

inserted between the output of the current state of the state machine and the inputs of the previous

stat (Figure 35).

Figure 34

Figure 35

Page 33 of 71

State machine

There are three possible states:

• “Fetch instruction”: the program counter increases by one, the new instruction is fetched from

the RAM during cycle 1 and 2 of the state machine counter (considered two cycles for the ram

to output the new value since the first implementation involved a register at its output stage).

• “Fetch data”: cycles 3 and 4, the address of the data RAM is updated, and it outputs the

variables needed for the task to execute. since two values are fetched at time and LCG needs

three input values, this state will extend until cycle 5. At cycle 3 the IR is updated.

• “Execution” of the current task: this state continues until the “next instruction” input is high.

The state machine takes as inputs the output of the state machine counter, the previous state, the

current state, and the output of the next instruction block delayed by one cycle. The outputs include

the current state which is equal to 10 during the execution state, 01 if in fetch data, and 00 in any

other case; Along with all the start inputs for fetching data and enabling execution of a specific task.

The “start fetch” output is high at the first cycle of fetch data. The start2 (LCG) and start3 (LIS) outputs

are high the first cycle of execution state and since FIB (task1) works slightly differently than the other

two, the start1 output is high during all execution cycles.

Pipelining these states would only be partially possible since:

• It cannot be forecast when certain instructions will end their execution given their variable

execution times.

• Fetching data cannot be done until the instruction is fetch (the addresses are not known in

advance since there are contained in the instruction word)

• The execution cannot happen before fetching the data input

In the implementation given the only pipelined stages taking places are the execution of LDI, STR,

MOV and LDR during the fetching state of the next instruction since these operations require only one

execution cycle (LDR takes two and has one cycle pipelined) and involve only the content of the data

RAM and the registers. Further optimizations have been done to the non-general of the CPU, more

relevant than this one in terms of performance.

Page 34 of 71

Decoder

Here most of the control inputs are defined based on the state, the current cycle number, the opcode

coming from the instruction register and the “next instruction” input. The Verilog code implements the

following logic:

• The accumulator is enabled whenever one of the tasks requires to store a result in it (FIB, LCG,

LIS, LDI) and is loaded in the instruction register and the “done” output is high.

• The program counter fetching the next instruction address is enabled whenever the “next

instruction” output is high.

• The instruction register changes its content whenever the fetch_data state starts.

• The write enable for the registers of the indirect addressing block is set to 1 whenever one of

the instructions that requires to write in a register (LDR, MOV) is complete (Figure 36).

• The write enable of the ram is high during an STR instruction when it has been completed

(Figure 36).

Next Instruction Block

This block outputs when an instruction is completed. Since there are different timings/execution length

for each instruction, each task block has a “done output” that is high when the instruction is complete.

Both the program counter and accumulator enable depend on this. Depending on the current

instruction, the ‘next_instr’ output (Figure 36) follows different logic:

• STR, MOV and LDI do not need execution cycles since their execution happens between the

‘fetch_data’ state and the ‘fetch_instruction’ of the next instruction (pipelined); Since the

‘done’ output is delayed by one cycle “next instruction” output will be high already in first cycle

of ‘fetch data’.

• For LDR an execution cycle is needed (using the ram requires an addition cycle).

consequently, the output will be set high at the first cycle of execution.

• For the specific tasks, they have been implemented so that there is one done output for LCG

and for FIB, while for LIS there are two. Therefore, the ‘next instruction’ output will be high

whenever one of those instruction are completed.

Figure 36 – next_instr code

Page 35 of 71

While running tests, an additional condition was added as an assertion after incurring in errors;

Sometimes the task would produce a done output while fetching the input at the start and would not

execute. Consequently, stated that any done output can be high only when start input is low. Having

the state machine be reset by the complete output of the current task makes the control path very

flexible in implementing additional instructions with undefined number of cycles.

Testing the Control Path

Some tests were done at this point of the implementation to check the functionality of the control path,

focusing on the state machine timing. As can be observed in Figure 37 the state machine and

decoder outputs behave as expected. In Figure 38 it can be noted how the entire control path works.

Data section

This section is composed of the data RAM, the logic block defining which data to be input in the RAM

(current address and value to be written), the accumulator, and the indirect addressing block with the

logic block defining the data that’s loaded into the registers.

Figure 37 – state machine and decoder test waveform

Figure 38 – control path test waveform

Page 36 of 71

Indirect Addressing and the Accumulator Block

This block (Figure 39) consists of four registers (r0, i.e. the accumulator, r1, r2, and r3) and can

perform different and more complex operations from the ones required by the specification [2] thanks

to the two modes of operation it uses:

• R0 can be used as an accumulator, enabled by the input defined in the decoder and loaded

with the data defined by the logic block “accumulator input”. Using an LDI instruction, the

accumulator can be loaded directly with a value provided in the instruction word’s 14 least

significant bits.

• All four registers can be loaded either with a value coming from the data RAM output (LDR) or a

value contained in another one of the registers (MOV). The lpm_decoder defines which of the

four registers is written by enabling only one of them using a two bit select line (the two least

significant bits of the instruction word) and loading the data from the “data_in” port.

Simultaneously to the write operation, three register can be read from. Those register are

selected by three multiplexers with control inputs respectively bits 0 and 1 (Ra), 2 and 3 (Rb), 4

and 5 (Rc) of the instruction word. The data outputs do not need to all come from different

registers, but one will always be the same as the one written (Ra).

Figure 39 – indirect addressing and accumulator block

Page 37 of 71

Accumulator Input Logic Block

This Verilog file defines which data word should load in the accumulator/one of the registers:

• Accumulator: depending on the current instruction (LCG, FIB, LIS or LDI) the “data_in” input will

be set to the result of task1, 2, 3 or the least 14 significant bits of the LDI instruction word

• Register: depending on the current instruction the “data_in” input will be the output of the RAM

(STR) or the content of the source register (MOV) and will be written into the register

corresponding to the two least significant bit of the instruction word (Ra)

Additional Observations on the Timing of the Load Operation

Since for STR and MOV the execution of the instruction happens during fetch states to reduce the

number of cycles of those instruction, thus, the execution state never occurs, the written register will

be loaded before the instruction register actually changes. Therefore, a need to use the output of the

instruction RAM, instead of the output of the IR, for all the control input of those two instructions was

necessary. At the same time, after testing LDR, it was evident that this is the only instruction that

writes to registers after the execution, when the instruction RAM output cannot be taken as it is

already changing to fetch the next instruction, but the IR keeps LDR. Consequently, a bus mux has

been added before the indirect addressing block input port to choose the register based on the

instruction word coming from the RAM or the IR, depending the last instruction fetched.

Data RAM and Input Data Logic

Since there were no restrictions on the width of the data word in the memory [2], it was set at twenty-

eight-bits wide; The twelve most significant bits are not be used if not dealing with a linked list. It was

also decided that a two port RAM be used so that two values can be read at the same time, halving

the time needed to fetch data.

Page 38 of 71

An additional Verilog file defines which address and data are input into the data RAM, given the

control input “start_fetch” is high and the current instruction is:

• LIS (indirect addressing): addr1 from the register ‘A’ (starting address) and addr2 from Rb

(value to find) (0-1 and 2-3 bits of instruction word).

• FIB (direct addressing): address is directly in the twelve least significant bits of the

instruction word (argument of Fibonacci function).

• LCG: since this instruction needs three inputs, it cannot be fetched in one cycle. The first

cycle, when start fetch is high, addr1 (content of Ra) fetches ‘A’ and add2 (content of Rb)

fetches ‘B’. On the second cycle addr 1 (content of Rc) fetches value of ‘S’. The ‘start fetch’

input is delayed by one cycle with a flip-flop and is used as select line (fetch2_lcg) of a mux

that, when high, selects the address of ‘S’ from the first port (add1_next, second cycle of

fetch data state). Therefore, the fetch data state for LCG instruction needs one additional

cycle.

• STR or LDR: address found in bits thirteen to twelve of the instruction word.

The “data_in_ram” input (twenty-eight bits) is needed only with store instructions, in which case the

sixteen least significant bits are equal to the output of ‘Ra’ with the twelve most significant bits set to

zero.

Implementation of the specific Tasks and Testing

Finally, the blocks of the specific tasks were implemented and connected to the required input and

outputs. An additional option was introduced: if the 11th bit of the instruction word of LIS or LCG is

high, instead of fetching the input values through indirect addressing the registers addressed by the

instruction word directly contain the input value. Several tests were ran at this point, to check the

functionality of each of the seven instructions, comparing the outputs with the predicted ones

calculated on paper, and multiple instructions in series, verifying the CPU worked with various

combination of operations in sequence. Below (Figures 40 to 43) are two of the most relevant

waveforms generated by the CPU using different MIF files both for the data and the instruction RAM.

TEST 1

Given the following content of the data RAM (address in decimal, data in hex)

Figure 40 – test 1 MIF file

Page 39 of 71

FIB 0x009 (green); LDR 0x000 R1; LDR 0x001 R2; LDR 0x002 R3 (yellow); LCG R3 R2 R1 (orange);

LDR 0x003 R1; LDR 0x004 R2; LDR 0x005 R3 (pink)

TEST 2

Given the following content of the data RAM (linked list)

LDI 2 (yellow); MOV R0 R3 (green); LIS R3 (address of the value to be found = 0000) R2 (address of

the starting address= 001) (orange)

Figure 41 – test 1 waveform

Figure 42 – test 2 MIF file

Page 40 of 71

During the optimization process, the register present at the output inside the RAMs were removed,

speeding up the fetch process by one cycle. Some possible improvements to this circuit would be to

add a jump instruction or an arithmetic one. Both these ideas would be fairly easy to implement: the

first one would require adding an ‘if’ statement in decoder (if the opcode of JMP is present the state

machine returns to the first cycle of fetch data and program counter output is equal to the address in

the jump instruction). While for the second suggestion, an arithmetic unit (ALU for addition or

subtraction, same multiplication unit used in task 2 for multiplication or slightly modified one for

division) at the output of the accumulator would be added, making minimal changes in the data_in

logic block. Another instruction that could be implemented is stop, by adding a Verilog block at the

output of the instruction RAM with the following logic: if JMP opcode, all enable set to low, included

the one of the program counter of the state machine.

Figure 43 – test 2 waveform

Page 41 of 71

Optimized CPU

The optimized complete architecture uses the altered Fibonacci and Linked List blocks as well as the

unaltered LCG block as the basis for its main computational unit. For these blocks to operate

together, a common instruction register/decoder (IR) had to be created. To minimize the amount of

code in the Verilog block for the IR, it was split into four units. One task specific decoder for each of

the 3 possible operations, and a general IR whose sole purpose was to act as an enable line for each

of the instruction specific decoders, and ensured that no operations were taking place when the

address of the instruction RAM, which comes from the program counter (PC), was changing (Figures

44).

Figure 45 illustrates how the control lines from the general IR acts as an enable line for the task

specific decoders.

Figure 44.1 – input into general IR to disable operations during PC address changes

Figure 44.2 – Verilog code for general IR

High for the cycle the PC

increases and the cycle

thereafter.

Page 42 of 71

When a task specific decoder receives the instruction data it performs its own fetch cycles to ensure

the main task specific operating block has all the correct input before it starts operating; Each main

operating block has some form of a direct or indirect enable line which stops it from operating. This

required a different number of cycles, which were timed using a counter for each task. The

implementation of the counter and each of the task’s IR operation is depicted in Figures 46.

Same situation

for all other

task IR’s.

Does not operate

when instruction

input is 0.

Figure 45 – Output of general IR and how it enables the task 3 (linked list) IR

Page 43 of 71

Task Counter Value Operation

Fibonacci 0 Fetches ‘n’ from Data RAM

 1 Inputs n into main operating block and

enables it

Random Number 0 Fetches A and B

Generator 1 Fetches S

 2 Inputs variables into main operating block

and enables it

Linked List Search 0 Fetches ‘head address’ address and search

value address from registers

 1 Fetches head address and search value from

the Data RAM using address’ stored in

registers

 2 Inputs these values into the main operating

block and enables it

Figure 46.1 – Task 2 (random number generator) IR and its counter

Keeps track of how

many cycles have passed

through the count value.

Resets counter when task

is complete in preparation

for next instruction call.

Figure 46.2 – Fetch process for each task

Page 44 of 71

Other components added into the general architecture included a PC and an Accumulator (Figure 47),

both implemented using counters with different settings and use the “complete” outputs of each task

block to alter their current value.

A 2-port RAM block (with eight, eleven-bit words), which was to be used for the indirect addressing of

task 3, was added. To initialise variables into this RAM, a 4th instruction was needed which loaded

addresses into the RAM directly. The execution of this instruction was implemented and tested to

ensure the correct values were written to the correct address.

The final complete circuit can be split into distinct sections as seen in Figure 48. At the start of each

new instruction the general IR selects which task specific block is needed for the task. Once the task-

specific decoder performs its fetch cycle and the main operational block executes the instruction, the

output is automatically stored into the Accumulator and the Program Counter is incremented by 1.

Figure 47 – Program counter and Accumulator

Inserts value from the task

output blocks when they are

complete; Retains its value

otherwise.

Inputs address to instruction

RAM and increases when each

instruction is complete.

Page 45 of 71

The CPU was tested with Figure 49 being the format for the assembly line code used. To confirm that

all the components correctly operated, the CPU was tested with Figure 50, this format is unique to the

non-general CPU.

Figure 48 – Complete non-general circuit

PC & Accumulator

RAM & IR

Lin
ke

d
 List Task

Random Number Generator Task

Fibonacci Task

Page 46 of 71

Assembly Line Binary

Fibonacci Task

Operand Address of n Opcode

[15:11]

Address of n [10:0]

FIB Data RAM 00001 Data RAM

Random Number Generator Task

Operand Address of a Opcode

[15:11]

Address of a [10:0]

LCG Data RAM 00010 Data RAM

Linked List Search Task

Operand Search value

address

Head address

Opcode [15:11] Search

value

address

[5:3]

Head address

[2:0]

LLS Task 3 RAM 00011 Task 3 RAM

Loading Values to Task 3 RAM

Operand Address Value Opcode [15:14] Address

[13:11]

Value [10:0]

LDR Task 3 RAM Integer <= 2K 01 Task 3 RAM Integer <= 2K

FIB 2 // n = 1

LCG 8 // a = 1000, b = 3, s = 20

LCG 16 // a = 1025, b = 5, s = 13

LCG 8 // a = 1000, b = 3, s = 20

FIB 0 // n = 4

FIB 2 // n = 1

FIB 4 // n = 3

LDR 2 24

LDR 1 25

LDR 3 0

LLS 2 1 // search value = 36, head = 32

LLS 3 1 // search value = 4, head = 32

Figure 49 – Table translating the binary instructions to an assembly line code

Figure 50 – CPU test code

Page 47 of 71

Figure 51 is a waveform that shows the instructions executed correctly through the changing

Accumulator value, the default for an LLS value when the search value does not exist in the linked list

is to update the accumulator to 0.

Now the complete circuit was ready for functional tests to find maximum clock speed and power

consumption along with the main bottlenecks of the circuit to further optimize the performance. Since

all the task specific blocks were already tested no noteworthy errors were encountered during the

creation of the general architecture, the implementation of task specific blocks was made easier

through communication between the members who originally designed them.

Functional Analysis and Optimisations

When analysing the block, the main parameters that we are looking to improve upon are:

• Maximum clock frequency (Fmax). Ideally, we want a clock frequency of 100MHz.

• Power dissipation

o Total Thermal power dissipation (excluding I/O power dissipation)

o Dynamic Thermal power dissipation – Power dissipated from the switching of signals

o Static Thermal power dissipation - Power dissipated from the circuit being on

• Total number of logic elements

Initial CPU Comparison

Slack – “the margin by which a timing requirement was met or not met. A positive slack value,

displayed in black, indicates the margin by which a requirement was met. A negative slack value,

displayed in red, indicates the margin by which a requirement was not met [6].

 General Non-General

Fmax (MHz) 52.71 91.94

Largest slack -8.970 -0.877

Total power dissipation (mW) 297.43 68.67

Dynamic power dissipation (mW) 197.56 25.66

Static power dissipation (mW) 99.87 43.01

Total logic elements 1737 895

Total registers 453 170

Total block memory bits 3,325,953 66,808

Figure 51 – waveform corresponding to Figure 50

Page 48 of 71

Initially, the non-general CPU was displaying much more desirable values and the slack was very low

compared to the general CPU. Additionally, the power consumption is about 4-5 times lower with the

number of logic elements being about half. A significant value here is the number of memory bits

which requires attention to.

Optimising the General CPU

The performance of the general CPU was limited by the Fibonacci block which made it the focus of

optimization.

Initial analysis

Properties Values

Max clock frequency (MHz) 49.78

Total thermal power dissipation (mW) 237.4

Dynamic thermal power dissipation (mW) 138.14

Static thermal power dissipation (mW) 99.26

Total number of logic elements 1085

The main issue causing these undesirable values came from the extreme stack size of 65536

addresses and 3,145,728 bits (due to the word length being 48 bits). Further research into how stack

space would be used up when calling a function showed that for an input parameter of n, n address

spaces would be needed. This means that the current configuration allows for a maximum input of

65536 which is unnecessarily high; due to the how the expected input parameter is supposed to be

quite low. The stack size was reduced to 32 addresses and as the address length could be reduced to

5 bits, the word length was reduced to 37 bits. As a result, the stack now uses 1,184 memory bits.

As stack traditionally uses space in the main memory (in this case the data RAM), it was appropriate

to evaluate the effect of moving the stack into the RAM. Currently the number of memory bits used by

the data RAM is 114,688 and the address length is 12. To accompany this address length, the word

length used with the Fibonacci block would have to be extended to 44 which consequently extends

the RAM’s word length from 28. This would increase the total number of memory bits by 64,352 which

is much higher than the increase 1,184 memory bits when the stack is separate from the data RAM.

Consequently, the stack was kept separate from the data RAM.

Page 49 of 71

There was also a plethora of minor changes such as:

• Replacing the register that stored the previous value in addition conditions with a d-type flip

flop. This removed the need of a load signal to be output from the ‘valuecheck’ block.

• Reducing the bit count of values used in the state machine and the ‘InitialCounter’. The state

machine only used 4 states and the counter’s maximum value was 3 meaning both needed a

minimum of 2 bits to function properly.

• Deciding to use a counter to store the final value instead of a register.

Properties Counter Register

Fmax (MHz) 93.48 92.48

Total Thermal Power Dissipation

(mW)

61.87 60.34

Total logic elements 682 625

Despite the register providing a lower power dissipation and reducing the area of this block, the

maximum clock frequency was prioritized to get closer to the target frequency. Therefore, a counter

was used clearing up unnecessary inputs into the ‘valuecheck’ block and unnecessary code in

its verilog.

Final evaluation

Properties Initial Values Final Values

Max clock frequency (MHz) 49.78 93.11

Total thermal power dissipation

(mW)

237.4 57.84

Dynamic thermal power

dissipation (mW)

138.14 16.66

Static thermal power dissipation

(mW)

99.26 42.94

Total number of logic elements 1085 618

Total block memory bits 3,145,728 1184

Page 50 of 71

Optimizing the Non-general CPU

Optimizing the non-general circuit can come in the form of lower power consumption or higher clock

speed. The initial power analyser summary showed that total power consumption was low, relative to

that of the general circuit, at around 105 milli watts, most of which was a result of the RAM’s used in

the design meaning that little change could come from power oriented optimizations.

The main design improvements would likely be in the clock speed. A lot of the slack came from either

connection to the stack pointer or to the task specific counters. Form here the first plan was to replace

all task counters with a single task counter. However, that resulted in tasks 2 and 3 not operating

correctly. An attempt was made to alter the instruction format for the Fibonacci instruction by

replacing the address part of the instruction word with the direct value of n; This resulted in a

significant decrease in the max clock speed to around 75MHz.

In the end, no significant improvements were made to the non-general CPU. Task counter port widths

were reduced, and some test outputs were removed resulting in the final maximum clock speed of

91.96 MHz and a power dissipation of 106.34 as seen in Figure 52.

Figure 52 – results from final timing and power analysis

Page 51 of 71

Final CPU Comparison

 General Non-General

Initial Final Initial Final

Fmax (MHz) 52.71 64.7 91.94 91.96

Largest slack -8.970 -5.456 -0.877 -6.874

Total power dissipation (mW) 297.43 97.5 68.67 106.34

Dynamic power dissipation

(mW)

197.56 54.38 25.66 63.28

Static power dissipation (mW) 99.87 43.12 43.01 43.06

Total logic elements 1737 1282 895 878

Total registers 453 376 170 168

Total block memory bits 3,325,953 181,408 66,808 66,308

The general CPU has shown a significant improvement in every aspect but most of the non-general

CPU’s properties have worsened. Despite the higher power total power dissipation, the non-general

CPU still has the better clock frequency, logic element and register count. This increased total power

dissipation comes from the higher dynamic power dissipation meaning the non-general CPU has

more frequent changes in the signals.

For practical use, the non-general CPU would be more effective due to its significantly better

maximum clock frequency potential and its much lower area. The difference in power dissipation is

negligible given its advantages.

Project Planning and Management

Early on during the project each of the group members were assigned Belbin roles based on a survey

that was filled out.

Name Top Two Roles

Matilde Implementer Shaper

Nelson Completer Finisher Implementer

Bernard Co-ordinator Plant

Figure 53 – Team members’ top predicted Belbin

Roles

Page 52 of 71

The predicted Belbin roles (Figure 53) were quite representative of how the team worked together.

Bernard was the social leader whilst Matilde made sure that all the deliverables were ready on time

and Nelson was continuously working to polish the final product. Frequent and clear communication

between members was key and resulted in an organised work flow where each member was aware of

what the others were working on at any given point which made it simple to implement design files

made by different members.

The meeting frequency was initially weekly, after the first 2 weeks of the project this was increased to

every Thursday, Saturday, and Tuesday to accommodate for the increased workflow.

Figure 54 depicts the originally planned series of events/milestones whilst Figure 55 show how the

workflow turned out to be.

Figure 54 – Initial Gantt chart

Figure 55 – Final Gantt chart

Page 53 of 71

Final Conclusions

The final deliverables were two complete working CPUs, one designed to have a larger range of

operations and flexibility; The other an optimisation based on the first which achieves a similar power

consumption but at a higher maximum clock speed, sacrificing flexibility for performance. The more

general CPU gives the opportunity to easily implement new and more complex tasks in the future

whilst the optimised will be credited for its superior performance (relatively speaking).

If given more time, additional tasks would have been implemented into the general CPU. These could

include traversing the linked list and instead of searching for a value, a logic block could be

implemented to add a node in a sorted linked list. This would be done by finding the first value (B)

bigger/smaller than a given value (N). Then storing N with a pointer to the address of B (STR N

setting first 12 bits to address at which the search has ended). Subsequently, change the value of

pointers of previous elements to their new correct values (this could be done by storing intermediate

values in a register whilst the list is being altered).

The initial plan for the project ended was followed through to a satisfactory standard. This largely due

to successful communication between members and proper organisation as well as continued

documentation from the beginning.

Page 54 of 71

References

[1] Computer Organisation and Architecture, UPSC Fever. Accessed on Jun. 13, 2020. [Online].

Available: https://upscfever.com/upsc-fever/en/gatecse/en-gatecse-chp159.html

[2] E. Perea and E. Stott. ELEC40006: 1st Year Electronics Design Project 2020. Accessed on Jun.

13, 2020. [Online]. Available: https://bb.imperial.ac.uk/bbcswebdav/pid-1764926-dt-content-rid-

6221241_1/courses/13390.201910/EEE1%20Project%202020.pdf

[3] P. Gribble. Memory: Stack vs Heap. Accessed on Jun. 13, 2020. [Online]. Available:

https://gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html

[4] Piazza. Accessed on Jun. 13, 2020. [Online]. Available:

https://piazza.com/class/k9n8clkdzsz3nk?cid=37

[5] Difference Between RISC and CISC, Tech Difference. Accessed on Jun. 13, 2020. [Online].

Available: https://techdifferences.com/difference-between-risc-and-cisc.html

[6] Quartus II Help v13.0, Intel. Accessed on Jun. 13, 2020. [Online]. Available:

https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/

glossary/def_slack.htm

https://upscfever.com/upsc-fever/en/gatecse/en-gatecse-chp159.html
https://bb.imperial.ac.uk/bbcswebdav/pid-1764926-dt-content-rid-6221241_1/courses/13390.201910/EEE1%20Project%202020.pdf
https://bb.imperial.ac.uk/bbcswebdav/pid-1764926-dt-content-rid-6221241_1/courses/13390.201910/EEE1%20Project%202020.pdf
https://gribblelab.org/CBootCamp/7_Memory_Stack_vs_Heap.html
https://piazza.com/class/k9n8clkdzsz3nk?cid=37
https://techdifferences.com/difference-between-risc-and-cisc.html
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/glossary/def_slack.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/mergedProjects/reference/glossary/def_slack.htm

Page 55 of 71

Appendix

Screenshots of complete non-general CPU:

Instruction and Data RAM

General IR

Page 56 of 71

Program Counter and Accumulator

Blocks for Linked List Search Instruction

Page 57 of 71

Blocks for Random Number Instruction

Blocks for Fibonacci Instruction

Page 58 of 71

Verilog Code from the Non-general IR

General IR

Fibonacci Task IR

Page 59 of 71

Fibonacci Task – block to check if n < 2 at when the task counter is not equal to zero

Fibonacci Task – block used to output correct signals to the task output register when n < 2

Page 60 of 71

Main Fibonacci Operating Block – 1/5

Page 61 of 71

Main Fibonacci Operating Block – 2/5

Page 62 of 71

Main Fibonacci Operating Block – 3/5

Page 63 of 71

Main Fibonacci Operating Block – 4/5

Page 64 of 71

Main Fibonacci Operating Block – 5/5

Fibonacci Task – output block

Page 65 of 71

Task 2 multiplication

stp lcg

Enable LIS

Next instruction

Page 66 of 71

State machine

Decoder

Accumulator input logic 5

Page 67 of 71

Data in ram

Nelson’s main Fibonacci block code

Valuecheck if conditions

If condition ‘1’

Page 68 of 71

If condition ‘2’

If condition ‘3’

Page 69 of 71

If condition ‘4’

If condition ‘5’

Page 70 of 71

If condition ‘6’

If condition ‘initialising’

Page 71 of 71

If condition ‘oneorzero’

